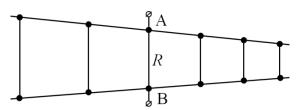

Межрегиональные предметные олимпиады КФУ профиль «Физика» заключительный этап 2023/24 учебный год 11 класс

Задача 1. (20 б.) Тонкий однородный проводник с линейной массовой плотностью ρ и удельным сопротивлением на единицу длины λ может скользить без трения по вертикальным однородным проводящим рельсам. Удельное сопротивление рельс на единицу длины так же, как и у проводника, равно λ . Конструкция находится в однородном магнитном поле величиной B, направление которого показано на рисунке. К конструкции приложено напряжение U, как показано на рисунке. Сопротивлением источника напряжения, подводящих проводов и контакта проводника с рельсами пренебречь. Пренебрегите также магнитным полем тока в образовавшемся контуре. Найдите частоту малых вертикальных гармонических колебаний проводника при отклонении от положения равновесия, много меньшем высоты положения равновесия. Указание: $(1 + a)^{\gamma} \approx 1 + \gamma a$ при $a \ll 1$.

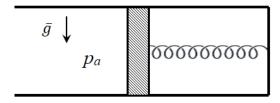
Задача 2. (20 б.) На горизонтальном дне цилиндрического сосуда радиусом r вертикально установлены две длинные тонкие проводящие пластины шириной a. Они установлены друг напротив друга и параллельны друг другу, расстояние между ними равно $d \ll a$. Эти пластины включены в электрическую цепь, как показано на рисунке. В цепь включен идеальный амперметр и идеальный источник напряжения U. Сосуд заполняется дистиллированной водой. Объемный расход воды, вытекающей из крана в сосуд $Q = \frac{\Delta V}{\Delta t} = const.$ За счет эффекта втягивания диэлектрика в конденсатор, между пластинами образовался столб воды с постоянной высотой над поверхностью жидкости,


высота столба существенно меньше длины пластин. Какой ток показывает амперметр? Диэлектрическая проницаемость воды ε , диэлектрическую проницаемость воздуха считать равной единице, электрическая постоянная ε_0 .

Задача 3. (20 б.) Интенсивностью светового излучения называется отношение суммарной мощности лучей, проходящих сквозь площадку ΔS , перпендикулярную направлению излучения, к площади этой площадки ($I=\frac{\Delta P}{\Delta S}$, где ΔP — мощность, проходящая сквозь площадку ΔS). Интенсивность излучения точечного изотропного источника убывает с расстоянием по закону $I=\frac{P}{4\pi r^2}$, где P — мощность источника, r — расстояние от источника. Два точечных изотропных источника света находятся на расстоянии a друг от друга. Мощность первого источника P, а мощность второго источника SP.

- 1) Какая точка отрезка, соединяющего эти два источника, будет наименее освещенной?
- 2) Чему равно значение интенсивности светового излучения в этой точке?

Интерференцией света пренебречь, считая свет, излучаемый этими источниками немонохроматическим.


Задача 4. (20 б.) Представленная на рисунке цепь из однородной проволоки состоит из бесконечного в обе стороны количества равнобедренных трапеций, каждая из которых обладает следующим двумя свойствами:

- 1. Высота равна меньшему основанию.
- 2. Отношение большего к меньшему основанию равно k = 19/12.

Найти сопротивление между точками A и B, если сопротивление прямого участка проволоки между клеммами равно R.

Задача 5. (20 б.) Один моль идеального двухатомного газа находится в расположенном горизонтально цилиндрическом сосуде. Порция газа ограничена вертикальным герметичным поршнем, который может двигаться вдоль оси цилиндра без трения. К поршню и дну сосуда прикреплена горизонтальная идеальная пружина (см. Рисунок). В начальном состоянии температура газа равна температуре окружающей среды, пружина не деформирована. Объемом пружины можно пренебречь. Если начальную температуру газа, ограниченного поршнем, повысить в η раз, то объем газа повысится в μ раз. Найдите теплоёмкость газа, ограниченного поршнем, в начальном состоянии.

