
Межрегиональные предметные олимпиады КФУ

профиль «Физика» заключительный этап 2023/24 учебный год 8 класс

Задача 1. (25 б.)

Однородная балка массой M=4 кг закреплена на трех одинаковых невесомых пружинах, как показано на рисунке. Расстояние между точкой подвеса верхней пружины и точкой опоры расположенной под ней нижней пружины в точности равно сумме толщины балки и удвоенной длины недеформированной пружины. Расстояния, указанные на рисунке: $L_1=20$ см, $L_2=60$ см, $L_3=50$ см. К левому концу балки подвешен груз массой m_1 , а к правому – $m_2=2$ кг. Чему равна масса груза m_1 , если балка строго горизонтальна?

Задача 2. (25 б.)

Опишем известный способ обмана на электронных весах. К корпусу весов с помощью скотча прикрепляется прозрачный пакет. На первый взгляд пакет служит для защиты весов от возможного загрязнения. Весы с лежащим на них свободно пакетом откалиброваны на 0. Перед взвешиванием нечестный продавец проглаживает пакет в направлении от линии крепления, и, не убирая руку, кладет товар. Затем продавец медленно снимает руку, и на электронном табло высвечивается «масса» товара, исходя из которой он рассчитывает стоимость. Коэффициент трения между пакетом и весами 0.1, коэффициент трения между товаром и пакетом варьируется от 0.2 до 0.5. Объясните, почему весы показывают больше, чем масса товара. На какую максимальную сумму может быть обманут покупатель, заплативший за «1 кг» колбасы стоимостью 600 р/кг?

P.S. Будьте бдительны!

Задача 3. (25 б.)

В цилиндрической бочке, заполненной водой, плавает однородный брусок. Уровень воды в бочке при этом равен H_0 . В первом случае на брусок сверху поставили груз массой m_1 , уровень воды в бочке изменился на величину $\Delta H_1 = H_1 - H_0$. Во втором случае на брусок сверху поставили груз массой m_2 , уровень воды в бочке изменился на величину $\Delta H_2 = H_2 - H_0$ относительно изначального. В обоих случаях брусок не погружался в воду полностью. Известно, что $\frac{\Delta H_2}{\Delta H_1} = \gamma$.

- 1) Найдите $\frac{m_2}{m_1}$ (рекомендуется начать с этого пункта). Ответ выразить только через величину γ .
- 2) Найдите отношение погруженного объема бруска во втором случае к погруженному объему бруска в первом случае $\frac{V_2}{V_1}$, если $\frac{M}{m_1} = \beta$, где M масса бруска. Ответ выразить только через величины γ и β .
- 3) По результатам, полученным в первых двух пунктах, вычислите значения $\frac{m_2}{m_1}$ и $\frac{V_2}{V_1}$ для $\beta=4$, $\gamma=2$.

Задача 4. (25 б.)

Для нагрева воздуха в помещении (далее - внешняя или окружающая среда) используют масляный обогреватель. Масляный обогреватель оснащен терморегулятором релейного типа, который работает следующим образом: при падении температуры масла ниже заданной температуры $T_{\rm y}$ (называемой температурой уставки) на небольшую величину ΔT (то есть температура масла равна $T_{\rm y} - \Delta T$), нагреватель включается, идет нагрев. Когда температура масла достигает величины $T_{\rm y} + \Delta T$, нагреватель отключается, масло остывает. Далее процесс повторяется. Температура включенного нагревателя $T_{\rm H} > T_{\rm y} + \Delta T$. Площадь нагревателя $S_{\rm H}$, его коэффициент теплоотдачи $\alpha_{\rm H}$. Площадь теплоотдачи обогревателя во внешнюю среду $S_{\rm B}$, соответствующий коэффициент теплоотдачи $\alpha_{\rm B}$. Рабочий объем обогревателя заполнен маслом, масса которого m, а удельная теплоемкость c. Теплоемкостью корпуса пренебречь. Температура окружающей среды $T_{\rm B} < T_{\rm y} - \Delta T$, на обогревателе выставлена температура уставки $T_{\rm y}$. Считать, что $\Delta T << T_{\rm H} - T_{\rm y}$, $T_{\rm y} - T_{\rm B}$.

Найдите период между включениями терморегулятора (от включения до следующего включения нагревателя) в установившемся режиме работы прибора.

Для простоты считать нагреватель идеальным (мгновенно нагревающимся и остывающим), теплопроводность масла высокой (температура масла во всех точках объема одинакова).