Межрегиональная предметная олимпиада Казанского федерального университета для иностранных граждан по профилю «Химия»

Заключительный этап 2024-2025 учебный год

Решения и разбалловка

Задача 1. Угадайка №1

Решение

1. Начать решение задачи нужно с определения веществ X_1 и X_5 . X_1 — нитрат, т.к. образуется в реакции с азотной кислотой. Тогда X_5 — какой-то оксид элемента X. Дальнейшее описание реакции X_5 с азотной кислотой (а именно образование двух X-содержащих продуктов) говорит о том, что это смешанный оксид. Попробуем определить X, предположив, что X_5 имеет состав X_3O_4 . Запишем уравнение *реакции 1* в общем виде:

$$6X(NO_3)_n = 2X_3O_4 + 6nNO_2 + (3n-4)O_2$$

Потеря массы составила 31.0%. Тогда:

$$2M(X_3O_4): 6M(X(NO_3)_n) = 1 - 0.31$$

Обозначим массу элемента X за x, тогда:

$$(6x + 16.8) : (6x + 372n) = 0.69$$

Отсюда x = 138n - 68.84. Перебирая степень окисления **X** в нитрате (n), получим x. При n = 2 x = 207.2, что соответствует свинцу. Следовательно, **X** – Pb, $\mathbf{X}_1 - \mathrm{Pb}(\mathrm{NO}_3)_2$, $\mathbf{X}_5 - \mathrm{Pb}_3\mathrm{O}_4$, $\mathbf{X}_6 - \mathrm{Pb}\mathrm{O}_2$.

Газ Γ вызывает помутнение известковой воды, при этом вступает в OBP с PbO₂, значит Γ – SO₂, X_3 – PbSO₄. Возвращаясь ко второму абзацу: в результате **реакций 4** и **5** образуются Pb и SO₂, причём в случае пятой реакции количество сернистого газа в два раза больше. Это даёт понять, что X_2 – PbS, X_4 – PbO.

В последнем абзаце описываются амфотерные свойства свинца, значит, $X_7 - Pb(OH)_2$, растворяющийся в избытке щёлочи с образованием $X_8 - Na[Pb(OH)_3]$.

2. Уравнения реакций:

$$3Pb + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 4H_2O$$

 $Pb(NO_3)_2 + 2NaCl \rightarrow PbCl_2 \downarrow + 2NaNO_3$

 $Pb(NO_3)_2 + 2NaI \rightarrow PbI_2\downarrow + 2NaNO_3$ $PbS + PbSO_4 = 2Pb + 2SO_2$ $2PbO + PbS = 3Pb + SO_2$ $SO_2 + Ca(OH)_2 = CaSO_3 + H_2O$ $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ $3Pb(NO_3)_2 = Pb_3O_4 + 6NO_2 + O_2$ $2Pb_3O_4 = 6PbO + O_2$ $Pb_3O_4 + 4HNO_3 = 2Pb(NO_3)_2 + PbO_2 + 2H_2O$ $PbO_2 + SO_2 = PbSO_4$ $Pb(NO_3)_2 + 2NaOH = Pb(OH)_2 + 2NaNO_3$ $Pb(OH)_2 + NaOH = Na[Pb(OH)_3]$

3. В анионе $[Pb(OH)_3]^-$ у свинца три заместителя и одна неподелённая электронная пара (тип AX_3E по методу Гиллеспи), следовательно, он имеет пирамидальную геометрию:

Система оценивания:

- **1.** Вещества $X, X_1-X_8, \Gamma \text{по 1 баллу. Всего 10 баллов.}$
- **2.** *Реакции 1-13* по **1 баллу**. Всего **13 баллов**.
- **3.** Геометрия иона $[Pb(OH)_3]^- 2$ балла.

Задача 2. Угадайка №2

Решение

- 1. Цвет пламени говорит о том, что во всех соединениях содержится натрий.
- 2. В растворе А среда щелочная, в растворе С кислая.
- 3. Раствор C во многих реакциях ведет себя как кислота: реагирует с железом и мелом с выделением газов, газы также выделяются при взаимодействии C с A и B. Скорее всего, C кислая соль. Поскольку с мелом C образует осадок, этой кислой солью может быть либо гидросульфат, либо дигидрофосфат.

Из **A** и **B** при реакции с «кислотой» (**C**) выделяются бесцветные газы (это могут быть сульфиты, карбонаты, сульфиды, цианиды, и т.д.), которые при пропускании в один раствор образуют светлый осадок. Из перечисленных анионов, выделяющих газы с кислотами, подходят только сульфит и сульфид, так как сероводород и сернистый газ легко сопропорционируют с выделением серы: $2H_2S + SO_2 \rightarrow 3S \downarrow + 2H_2O$. Это удовлетворяет и условию о том, что три вещества содержат 3 общих элемента: один из них натрий, а другой – сера. Тогда вещество **C** – гидросульфат натрия, NaHSO₄.

Чтобы отличить растворы **A** и **B**, рассмотрим последние опыты. Сульфит бромной водой окислится без образования осадка (раствор **B**), а сульфид – с выделением $S\downarrow$ (раствор **A**).

Однако все вещества содержат еще и третий общий элемент. Кислород не может содержаться в веществе из раствора \mathbf{A} , который ведет себя во всех реакциях как сульфид натрия. Однако все три соли могут быть кислыми, и тогда третий общий элемент — это водород. Следовательно, \mathbf{A} — NaHS, гидросульфид натрия, а \mathbf{B} — NaHSO₃, гидросульфит натрия.

Газ **X** выделяется из **A**, это сероводород, H_2S . **Y** выделяется из **B**, это $-SO_2$. **Z** выделяется из мела, это углекислый газ, CO_2 .

4. Уравнения реакций:

$$\begin{split} \text{NaHSO}_4 + \text{NaHS} &\rightarrow \text{Na}_2\text{SO}_4 + \text{H}_2\text{S}\uparrow \\ \text{NaHSO}_4 + \text{NaHSO}_3 &\rightarrow \text{Na}_2\text{SO}_4 + \text{H}_2\text{O} + \text{SO}_2\uparrow \\ 2\text{H}_2\text{S} + \text{SO}_2 &\rightarrow 3\text{S}\downarrow + 2\text{H}_2\text{O} \\ \text{CaCO}_3 + 2\text{NaHSO}_4 &\rightarrow \text{CaSO}_4\downarrow + \text{Na}_2\text{SO}_4 + \text{H}_2\text{O} + \text{CO}_2\uparrow \\ \text{Fe} + 2\text{NaHSO}_4 &\rightarrow \text{FeSO}_4 + \text{Na}_2\text{SO}_4 + \text{H}_2\uparrow \\ \text{Br}_2 + \text{NaHS} &\rightarrow \text{S}\downarrow + \text{NaBr} + \text{HBr} \\ \text{Br}_2 + \text{NaHSO}_3 + \text{H}_2\text{O} &\rightarrow \text{NaHSO}_4 + 2\text{HBr} \end{split}$$

5. Щелочь может превратить гидросульфид в сульфид натрия. Поскольку A_1 по качественному составу совпадает с NaHSO₃, это может быть кристаллогидрат сульфида натрия, Na₂S·nH₂O. Из уравнения 16n: (78+18n)=0.5995 находим n=9, то есть A_1 – это Na₂S·9H₂O.

Поскольку при кристаллизации раствора NaHSO₃ качественный состав изменяется, возможно, происходит дегидратация, и \mathbf{B}_1 не содержит водород. Если степень окисления серы не изменилась, то формулу можно представить в виде $\mathrm{Na}_{2x}\mathrm{S}_y\mathrm{O}_{x+2y}$ (исходя из степеней окисления элементов). Тогда из уравнения 16(x+2y): (62x+64y)=0.4208, находим соотношение y=2x, то есть формула соединения $\mathrm{Na}_{2x}\mathrm{S}_{2x}\mathrm{O}_{5x}$, то есть $\mathbf{B}_1-\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_5$ (пиросульфит натрия).

При прокаливании гидросульфата натрия также происходит дегидратация, образуется $Na_2S_2O_7$, пиросульфат натрия. Расчетом массовой доли можно убедиться в верности этого предположения, $C_1 - Na_2S_2O_7$.

6. Структурные формулы $S_2O_7{}^{2-}$ и $S_2O_5{}^{2-}$:

Система оценивания:

1. Указание на натрий - **1.5 балла**.

- 2. Верно определенная среда обоих растворов 1.5 балла.
- 3. Формулы **A**, **B**, **C** по **1.5 балла**, формулы **X**, **Y**, **Z** по **1 баллу**. Всего **7.5 баллов**.
 - 4. Уравнения 7 реакций по 1 баллу. Всего 7 баллов.
 - 5. Формулы трех соединения по 1.5 балла. Всего 4.5 балла.
 - 6. Структурные формулы двух анионов по 1.5 балла. Всего 3 балла.

Задача 3. Стратегическая важность

Решение

1. В первом случае 2,3-диметилбутадиен-1,3 является диеном, а тетрафторэтилен – диенофилом:

Во втором случае 2,3-диметилбутадиен-1,3 является одновременно и диеном, и диенофилом:

2. Образуется 2 продукта:

3. Соединения **A**–**D** вступают в классические реакции Дильса-Альдера. Во второй реакции она реализуется дважды. В третьей реакции диенофилом является алленовый фрагмент:

4. Стабильной молекулой, образующейся из описанных в условии веществ, по реакции, обратной реакции Дильса-Альдера, может быть бензол (жидкость **E**) или ацетилен (газ **E**). Пути распада с образованием упомянутых соединений представлены на схеме ниже с образованием бензола (слева) и образованием ацетилена (справа):

Бензол можно получить каталитической реакцией тримеризации ацетилена:

Система оценивания:

- 1. 2 структуры продуктов **по 1 баллу**, определение диенов и диенофилов **по 1 баллу** для каждого из продуктов. Всего **4 балла**.
 - 2. 2 структуры продуктов по 1 баллу. Всего 2 балла.
 - 3. Структуры веществ A, B, C и D по 1.5 балла. Всего 6 баллов.

4. Структуры 8 веществ **по 1.5 балла**, получение бензола из ацетилена — **1 балл**. Всего **13 баллов**.

Задача 4. Псевдогалогениды серебра

Решение

- 1. Количество ионов серебра в 1 л: $n = N/N_A = 3.5 \cdot 10^{-10}$ моль, значит $[Ag^+] = 3.5 \cdot 10^{-10}$ моль/л. $[SCN^-] = K_s / [Ag^+] = 3.1 \cdot 10^{-3}$ М.
- **2**. Константу образования комплекса можно выразить следующим уравнением через равновесные концентрации частиц:

$$\beta = \frac{[Ag(SCN)_2^-]}{[Ag^+][SCN^-]^2}$$

3. Растворимость складывается из концентраций комплекса и свободного серебра в растворе: $s = [Ag^+] + [Ag(CN)_2^-]$, откуда:

$$s = [Ag^{+}] + \beta [Ag^{+}][SCN^{-}]^{2} = \frac{K_{s}}{[SCN^{-}]} + \beta \frac{K_{s}}{[SCN^{-}]}[SCN^{-}]^{2} = \frac{K_{s}}{[SCN^{-}]} + \beta K_{s}[SCN^{-}]$$

Для нахождения минимума можно приравнять нулю производную растворимости по $[SCN^-]$:

$$\frac{ds}{d[SCN^{-}]} = -\frac{K_s}{[SCN^{-}]} + \beta K_s = 0$$
$$[SCN^{-}] = \frac{1}{\sqrt{\beta}} = 1.64 \cdot 10^{-4}$$

4. Растворимость проходит через минимум, поэтому нам необходимо выбрать больший из двух корней уравнения:

$$10^{-5} = \frac{K_{\rm S}}{[{\rm SCN}^{-}]} + \beta K_{\rm S}[{\rm SCN}^{-}]$$

$$10^{-5} = \frac{1.1 \cdot 10^{-12}}{[{\rm SCN}^{-}]} + 3.7 \cdot 10^{-3}[{\rm SCN}^{-}]$$

$$10^{-5}[{\rm SCN}^{-}] = 1.1 \cdot 10^{-12} + 3.7 \cdot 10^{-3}[{\rm SCN}^{-}]^{2}$$

Корни квадратного уравнения: $[SCN]_1 = 2.7 \cdot 10^{-3} \text{ M}$, $[SCN]_2 = 1.1 \cdot 10^{-7} \text{ M}$. Выбираем в качестве ответа корень $[SCN]_1 = 2.7 \cdot 10^{-3} \text{ M}$ как больший из двух.

5. Структурные формулы координационного полимера и дициана:

$$+$$
Ag $-C \equiv N + N = C - C \equiv N$

Координационное число серебра в координационном полимере равно 2.

6. Уравнение реакции разложения: $2AgCN \rightarrow 2Ag + C_2N_2$. Откуда:

$$\Delta_r H = \Delta_f H(C_2 N_2) - 2 \cdot \Delta_f H(AgCN) = 601$$
 кДж/моль.

7. Теплоемкость — это количество теплоты, необходимое для нагрева 1 моль вещества на единицу температуры. В случае, если она зависит от температуры, теплоемкость является производной теплоты по температуре.

$$c = \frac{dQ}{dT} = 34 + 0.09645T$$

$$dQ = (34 + 0.09645T)dT$$

$$Q = \int_{298}^{528} (34 + 0.09645T)dT = \left(34T + 0.09645\frac{T^2}{2}\right)\Big|_{298}^{528} =$$

$$\left(34 \cdot 528 + 0.09645 \cdot \frac{528^2}{2}\right) - \left(34 \cdot 298 + 0.09645 \cdot \frac{298^2}{2}\right) = 16982 \text{ Дж} \approx 17 \text{ кДж}$$

Нагревание означает увеличение энтальпии вещества, значит:

$$\Delta_f H_{528K} = \Delta_f H_{298K} + Q = 326 \text{ кДж/моль}.$$

Система оценивания:

- 1. Количество ионов Ag⁺ и концентрация SCN⁻ по 1 баллу. Всего 2 балла.
- **2**. Выражение для β **2 балла**.
- **3**. Выражение для s, производная s, численное значение концентрации по **2** балла. Всего 6 баллов.
 - 4. Расчет концентрации 3 балла.
 - 5. 2 структурные формулы и КЧ серебра по 1 баллу. Всего 3 балла.
 - 6. Расчет энтальпии реакции 2 балла.
- 7. Запись общего вида интеграла **2 балла**, расчет теплоты **3 балла**, расчет энтальпии образования **2 балла**. Всего **7 баллов**.