Министерство науки и высшего образования РФ ФГАОУ ВО «Казанский (Приволжский) федеральный университет» Химический институт им. А.М. Бутлерова

МЕЖРЕГИОНАЛЬНАЯ ПРЕДМЕТНАЯ ОЛИМПИАДА КАЗАНСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА ПО ПРЕДМЕТУ «ХИМИЯ»

Очный тур

2024-2025 учебный год

Решения заданий для 8 и 9 классов

8 класс

Задача 1. Элементы-соседи Решение

1. 4 типичных неметалла содержат только 16 и 17 группы таблицы Менделеева. Значит, U — либо кислород, либо фтор, а их соединения — либо оксиды, либо фториды. Тогда Y_1 — оксид или фторид среднего по массе из оставшихся в группе элементов в высшей степени окисления, то есть либо SeO_3 , либо BrF_7 (в действительности, последний не существует). Расчетом массовой доли кислорода можно убедиться, что речь о SeO_3 :

$$w(O) = \frac{48}{48 + 78.97} = 0.378$$

Тогда X - S, Y - Se, Z - Te, U - O, $X_1 - SO_3$, $Y_1 - SeO_3$, $Z_1 - TeO_3$.

2. Структурные формулы веществ:

3. Очевидно, $X_2 - H_2SO_4$, $Y_2 - H_2SeO_4$.

Формулу \mathbb{Z}_2 можно в общем виде записать как $H_x \text{TeO}_y$. В соответствии с общим числом атомов, y=13-x-1=12-x, то есть формула преобразуется в $H_x \text{TeO}_{12-x}$. С учетом степеней окисления элементов: $+1 \cdot x + 6 - 2(12-x) = 0$, откуда находим x=6. То есть $\mathbb{Z}_2 - H_6 \text{TeO}_6$.

4. Чем более кислотный характер оксида, тем активнее он взаимодействует с водой. Исходя из этого, *наименее* активно с водой взаимодействует TeO₃.

Система оценивания:

1. Элементы X, Y, Z, U и вещества X_1, Y_1, Z_1 по 1 баллу. Всего 7 баллов.

2

- 2. 3 структуры по 3 балла. Всего 9 баллов.
- 3. Формулы веществ X2, Y2 и Z2 по 2 балла. Всего 6 баллов.
- **4.** Ответ с обоснованием **3 балла**. Без обоснования **1 балл**.

Задача 2. Эксперименты в лаборатории Решение

1. В поглотителе с Р₂О₅ поглощается вода.

Судя по описанию реакции с соляной кислотой, исходное вещество — карбонат, тогда в поглотителе с CaO поглощается образующийся при прокаливании карбоната CO_2 .

Уравнения реакций:

$$3H_2O + P_2O_5 \rightarrow 2H_3PO_4$$
 или $H_2O + P_2O_5 \rightarrow 2HPO_3$
CaO + CO₂ \rightarrow CaCO₃

- 2. Как уже было сказано, разложение при нагревании и взаимодействие с соляной кислотой с выделением газа характерно для карбонатов, сульфитов и сульфидов, при этом газ без запаха выделяется только в случае карбонатов.
 - 3. При разложении карбонатов образуются оксиды.
 - 4. Это осадок фторида, его общая формула МГ_n.
- **5**. В первом опыте из 200 порций **X** получается 109–110 порций оксида M_2O_n , во втором опыте из 300 порций **X** получается 197–198 порций фторида MF_n . В расчете на 100 порций исходного **X** образуется либо 54.5–55 порций M_2O_n , либо 65.667–66 порций MF_n . Две указанные массы оксида и фторида образуются из одинаковой навески **X**, а значит, содержат равные количества металла:

$$\frac{m(M_{2} O_{n})}{2M + 16n} \cdot 2 = \frac{m(M F_{n})}{M + 19n}$$

$$M + 19n = (M + 8n) \cdot \frac{m(M F_{n})}{m(M_{2} O_{n})} = \frac{m(M F_{n})}{m(M_{2} O_{n})} M + \frac{m(M F_{n})}{m(M_{2} O_{n})} \cdot 8n$$

$$\left(\frac{m(M F_{n})}{m(M_{2} O_{n})} - 1\right) M = \left(19 - 8\frac{m(M F_{n})}{m(M_{2} O_{n})}\right) n$$

$$M = \frac{19 - 8\frac{m(M F_{n})}{m(M_{2} O_{n})}}{\frac{m(M F_{n})}{m(M_{2} O_{n})} - 1} n$$

Отношение масс фторида и оксида лежит в пределах от 66/54.5 = 1.2110 до 65.667/55 = 1.1939. Подстановкой этих граничных значений в полученное выражения получаем, что молярная масса металла лежит в пределах от 44.13n до 48.73n.

Для n = 1: M в пределах от 44.13 до 48.73 — в этих пределах нет подходящих для с.о. +1 металлов.

Для n = 2: M в пределах от 88.26 до 97.46 - в этих пределах нет подходящих для с.о. +2 металлов.

Для n = 3: M в пределах от 132.39 до 146.19 — в этих пределах лежат массы La, Ce, Pr, Nd. Барий, также попадающий в этот диапазон, не проявляет c.o. +3.

Итого, под численные данные о двух опытах подходят 4 металла в степени окисления +3: La, Ce, Pr, Nd.

6. Сиреневую окраску имеют соединения неодима +3.

При прокаливании 200 г **X** образовалось бы 47-48 г воды и 43-44 г CO_2 , и 109-110 г Nd_2O_3 . Указанные массы соответствуют количествам: 2.39-2.67 моль воды, 0.977-1 моль CO_2 , 0.324-0.327 моль Nd_2O_3 . Видно, что количество CO_2 в 3 раза больше количества оксида неодима, а количество воды — в 8 (с точностью до целых) раз больше количества оксида неодима. Тогда уравнение разложения **X** можно записать как:

$$X \rightarrow Nd_2O_3 + 3CO_2 + 8H_2O$$

Суммарно состав X можно записать как $Nd_2(CO_3)_3 \cdot 8H_2O$.

Система оценивания:

- 1. 2 вещества по 1 баллу, 2 уравнения реакций по 1 баллу. Всего 4 балла.
- **2.** Указание аниона **2 ба**лла.
- **3.** Указание класса соединений **2 балла**.
- **4.** Общая формула фторида **2 балла**.
- **5.** Определение 4 металлов **по 2,5 балла**. Всего **10 баллов**.
- **6.** Оценка соотношения 1:3:8-2 балла, указание на неодим -1 балл, верная формула $\mathbf{X}-\mathbf{2}$ балла. Всего **5** баллов.

Задача 3. Запутанные растворы Решение

1. По-видимому, элемент **X** образует несколько кислородсодержащих кислот. Они обычно имеют формулу H_x ЭО $_y$. Тогда число молекул кислоты в растворе равно числу атомов элемента Э.

$$n(\text{кислоты}) = 2.402 \cdot 10^{23} / 6.02 \cdot 10^{23} = 0.399 \text{ моль.}$$

Если концентрация кислоты равна 201 г/л, а объем раствора 200 мл = 0.2 л, то:

$$m(\text{кислоты}) = 0.2 \cdot 201 = 40.2 \ \Gamma$$

 $M(\text{кислоты}) = 40.2/0.399 = 100.8 \ \Gamma/моль.$

Если в указанной порции раствора 1 содержится N молекул воды, то:

$$1.244 \cdot 10^{25} = 2N + x \cdot 2.402 \cdot 10^{23}$$
$$7.062 \cdot 10^{24} = N + y \cdot 2.402 \cdot 10^{23}$$

Домножим второе уравнение на 2 и вычтем из результата первое уравнение:

$$2 \cdot 7.062 \cdot 10^{24} - 1.244 \cdot 10^{25} = (2y - x) \cdot 2.402 \cdot 10^{23}$$

 $2y - x = 7$.

Такое соотношение между индексами в формуле кислоты возможно, если x = 1, y = 4 (или при более экзотических соотношениях, например x = 3, y = 5). Если формула кислоты H \ni O₄, вычитая из молярной массы фрагмент HO₄, получаем, что на 1 атома

неизвестного элемента приходится 35.8 г/моль — это очень близко к хлору. Итого, в растворе 1 содержится $HClO_4$.

2. 200 мл раствора содержат 0.399 моль HClO₄, а также молекулы воды, количество которых равно:

$$N = 7.062 \cdot 10^{24} - 4 \cdot 2.402 \cdot 10^{23} = 6.101 \cdot 10^{24}$$
.

Или $n(H_2O) = 6.101 \cdot 10^{24} / 6.02 \cdot 10^{23} = 10.135$ моль воды.

Масса раствора равна:

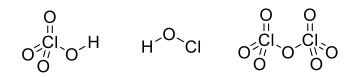
$$m = 0.399 \cdot 100.45 + 10.135 \cdot 18 = 222.5 \text{ }\Gamma.$$

Массовая доля кислоты:

$$w = 0.399 \cdot 100.45/222.5 = 0.180 = 18\%$$
.

Плотность раствора:

$$r = 222.5/200 = 1.11$$
 г/мл.


- **3**. 1 л раствора **2** имеет массу 1088 г. С учетом массовой доли, он содержит $1088 \cdot 0.18 = 195.84$ г растворенного вещества. С учетом молярной концентрации, количество растворенного вещества в 1 л раствора равно 5.37 моль. Значит, молярная масса растворенного вещества равна 195.84/5.37 = 36.46 г/моль, что в точности соответствует **HCl**.
- 2 мл раствора 3 содержат $2 \cdot 6.87 = 13.74$ мг = 0.01374 г растворенной кислоты. Количество NaOH, пошедшее на ее нейтрализацию, равно $0.0105/40 = 2.625 \cdot 10^{-4}$ моль. Поскольку реакция с кислотами хлора идет в соотношении 1:1, то молярная масса кислоты равна $0.01374/2.625 \cdot 10^{-4} = 52.3$ г/моль, что соответствует **HCIO**.

Если растворенное вещество в **растворе 4** имеет формулу $HClO_x$, то на каждую молекулу $HClO_x$ приходится 10 молекул H_2O . То есть на 21 атом водорода приходится x + 10 атомов кислорода. С учетом условия:

$$21 = 1.61(x + 10)$$
.

Получаем x = 3, кислота — $HClO_3$.

- 4. Уравнения реакций:
 - (1) $3H_2O + P_2O_5 \rightarrow 2H_3PO_4$ или $H_2O + P_2O_5 \rightarrow 2HPO_3$
 - (2) $2HClO_4 + P_2O_5 \rightarrow Cl_2O_7 + 2HPO_3$ (или вариант с H_3PO_4)
 - (3) $2Cl_2O_7 \rightarrow 2Cl_2 + 7O_2$
 - (4) $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$
 - (5) $3HClO \rightarrow 2HCl + HClO_3$
 - (6) $2HClO \rightarrow 2HCl + O_2$
- 5. Структурные формулы:

Система оценивания:

- 1. Молярная масса 1 балл, формула 2 балла. Всего 3 балла.
- 2. Плотность и массовая доля по 2 балла. Всего 4 балла.
- 3. 3 вещества по 2 балла. Всего 6 баллов.
- 4. 6 реакций по 1 баллу. Всего 6 баллов.
- 5. 3 структурные формулы по 2 балла. Всего 6 баллов.

Задача 4. Немного похимичить Решение

- 1. Формулы веществ:
 - медный купорос $CuSO_4 \cdot 5H_2O$;
 - нитрат железа(III) (в виде нонагидрата) $Fe(NO_3)_3 \cdot 9H_2O$;
 - аммиак NH₃;
 - хлорид бария BaCl₂.
- 2. 1) Белый осадок вещества, состоящий из 3 элементов подходит BaSO₄.

$$BaCl_2 + CuSO_4 \rightarrow BaSO_4 \downarrow + CuCl_2$$

2) Белый осадок вещества, состоящий из 2 элементов – подходит CuCl.

$$CuSO_4 + 2NH_3 + 2H_2O \rightarrow Cu(OH)_2 + (NH_4)_2SO_4$$

$$Cu(OH)_2 \xrightarrow{t} CuO + H_2O$$

$$3CuO + 2NH_3 \xrightarrow{t} 3Cu + 3H_2O + N_2$$

$$BaCl_2 + CuSO_4 \rightarrow BaSO_4 \downarrow + CuCl_2$$

$$Cu + CuCl_2 \rightarrow 2CuCl \downarrow$$

3) Бурый газ – подходит NO₂.

$$4 \text{ Fe(NO}_3)_3 \cdot 9 \text{H}_2\text{O} \xrightarrow{t} 2 \text{Fe}_2\text{O}_3 + 36 \text{H}_2\text{O} + 12 \text{NO}_2 + 3 \text{O}_2$$

4) Бурый осадок – подходит Fe(OH)3.

$$Fe(NO_3)_3 + 3NH_3 + 3H_2O \rightarrow Fe(OH)_3 \downarrow + 3NH_4NO_3$$

5) Летучее бесцветное вещество, агрессивно реагирующее с водой — подходит SO_3 .

$$CuSO_4 \xrightarrow{t} CuO + SO_3$$

6) Фиолетово-синий раствор – подходит [Cu(NH₃)₄]SO₄.

$$CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$$

7) Основной компонент воздуха – это N_2 . Один из вариантов его получения приведен выше – в (2).

8) Веселящий газ – это N_2O . Способ получить раствор нитрата аммония приведен выше.

$$NH_4NO_3 \xrightarrow{t} N_2O + 2H_2O$$

Могут быть найдены другие варианты решения – все химически здравые версии считаются верными!

Система оценивания:

- **1.** 4 вещества **по 1 баллу** (неверный гидрат или отсутствие гидратной воды **0.5 балла**). Всего **4 балла**.
- **2.** Верно предложенное вещество в каждом пункте -1 балл. Верный способ получения -1.5 балла (кроме CuCl за него 2.5 балла). Всего 21 балл.

9 класс

Задача 1. Атомный сплав Решение

1. Установить, что элемент \mathbf{A} – свинец, Pb, можно исходя из факта, что металл должен давать малорастворимый йодид, окрашенный в ярко-желтый цвет (вариант с серебром не подходит, поскольку йодид серебра имеет желтую, но не яркую окраску, а также не удовлетворяет последующим превращениям и цветам оксидов). Тогда соединения \mathbf{A}_1 - \mathbf{A}_5 имеют следующие формулы:

 $A_1 - Pb(NO_3)_2$, поскольку получается растворением сплава в азотной кислоте;

 $A_2 - PbO_2$, имеет темно-коричневый цвет;

 $A_3 - Pb_3O_4$, имеет оранжевый цвет;

A₄ – PbO, получается при разложении нитрата;

 ${f A_5}-{\hbox{PbI}}_2,$ ярко-желтого цвета, получается при взаимодействии нитрата с йодидом калия.

Исходя из условия задачи, элемент **Б** является соседом элемента **A** по Периодической системе. Под эту роль подходят таллий, олово и висмут, если брать только ближайших соседей (по горизонтали и по вертикали). Сделать выбор можно на основе отличия массовой доли йода: по условию задачи массовая доля йода в **A**₅ меньше, чем в **Б**₂ в 1,17 раза. Массовая доля йода в йодиде свинца составляет 55,1%, значит, массовая доля йода в **Б**₂ должна быть 64,5%, что хорошо соответствует йодиду висмута(III) (йодид таллия(III) тоже близок к данному значению — 65,1, однако не подходит, поскольку таллию(III) некуда дальше окисляться). Таким образом, элемент **Б** – висмут, Ві, а соединения **Б**₁-**Б**₆ имеют следующие формулы:

 $\mathbf{F}_1 - \mathrm{Bi}(\mathrm{NO}_3)_3$, поскольку получается растворением сплава в азотной кислоте;

 ${\bf F_2} - {\rm BiI_3}$, имеет темно-коричневый цвет;

 ${f F}_3-{
m K}[{
m BiI_4}],$ получается растворением в избытке йодида калия, а комплексный анион состоит из пяти атомов;

 $\mathbf{F}_4 - \mathrm{Bi}_2\mathrm{O}_3$, получается при разложении нитрата;

 ${f E}_5-{
m NaBiO_3},$ может быть получен щелочным окислением нитрата или окислением оксида пероксидом натрия;

 ${f F}_6-{
m Na[BiCl_4]},$ получается при взаимодействии висмутата с концентрированной соляной кислотой.

2. Уравнения реакций:

$$Pb_xBi_y + (2,67x+4y)HNO_3 = xPb(NO_3)_2 + yBi(NO_3)_3 + (0,67x+y)NO + (1,33x+2y)H_2O$$

либо для растворения сплава можно написать два уравнения растворения компонентов по отдельности:

$$3Pb + 8HNO_3 = 3Pb(NO_3)_2 + 2NO + 4H_2O$$

 $Bi + 4HNO_3 = Bi(NO_3)_3 + NO + 2H_2O$

```
2Pb(NO_3)_2 = 2PbO + 4NO_2 + O_2

Pb(NO_3)_2 + 2NaOH + H_2O_{2(конц.)} = PbO_2 + 2NaNO_3 + 2H_2O

3PbO_2 = Pb_3O_4 + O_2

2Pb_3O_4 = 6PbO + O_2

Pb_3O_4 + 4HNO_3 = 2Pb(NO_3)_2 + PbO_2 + 2H_2O

Pb(NO_3)_2 + 2KI = PbI_2 + 2KNO_3

Bi(NO_3)_3 + 3KI = BiI_3 + 3KNO_3

Bi(NO_3)_3 + 3KI = BiI_3 + 3KNO_3

BiI_3 + KI_{(H36.)} = K[BiI_4]

4Bi(NO_3)_3 = 2Bi_2O_3 + 12NO_2 + 3O_2

2Bi(NO_3)_3 + 4NaOH + 2Na_2O_2 = 2NaBiO_3 + 6NaNO_2 + 2H_2O + 3O_2

2Bi_2O_3 + 2Na_2O_2 + O_2 = 4NaBiO_3

NaBiO_3 + 6HCl_{(KOHIL.)} = Na[BiCl_4] + Cl_2 + 3H_2O
```

Система оценивания:

- 1. Правильно определенные элементы **A** и **Б**, а также вещества **A**₁-**A**₅ и **Б**₁-**Б**₆ по 1 баллу. Всего 13 баллов.
- **2.** Растворение сплава в азотной кислоте (в виде одной реакции или двух отдельных реакций) **1,5 балла**, реакции образования йодидов и растворения йодида висмута в йодиде калия **по 0,5 балла**, остальные реакции **по 1 баллу**. Всего **12 баллов**.

Задача 2. Непростые соединения Решение

1. Простые вещества X и Y обладают весьма специфичными физическими свойствами, поэтому их легко определить:

$$\mathbf{X}$$
 — белый фосфор — P_4 ; \mathbf{Y} — бром — Br_2 .

Следовательно, вещества $\mathbf{A} - \mathbf{C}$ — бромиды фосфора разного состава. При реакции фосфора с избытком брома образуется PBr_5 , который может обратимо разлагаться на PBr_3 и Br_2 . Анионы тяжелых галогенов (Br^- и I^-) склонны к образованию устойчивых комплексных трехатомных анионов при реакции с соответствующим галогеном (наиболее известный пример — KI_3). PBr_5 также может реагировать с бромом, образуя PBr_7 , состоящий из ионов $[PBr_4]^+$ и $[Br_3]^-$.

Молярная масса PBr₅ больше молярной массы PBr₃ в $\frac{30,97+5\cdot79,9}{30,97+3\cdot79,9} = 1,59$ раз.

Молярные массы указанных ионов относятся как $\frac{30,97+4\cdot79,9}{3\cdot79.9} = 1,46:1.$

 $A - PBr_7$ или PBr_4Br_3 ;

 $\mathbf{B} - PBr_5$;

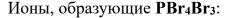
 $\mathbf{C} - PBr_3$.

Белый фосфор реагирует с раствором КОН, образуя гипофосфит калия и фосфин, а бром образует бромид и бромат калия. Реакцию $\bf A$ с КОН можно рассматривать как реакцию $\bf PBr_5$ с КОН и $\bf Br_2$ с КОН по отдельности, поэтому образуются бромид, бромат и фосфат калия. $\bf PBr_5$ с КОН дает фосфат и бромид калия, а $\bf PBr_3$ — фосфит и бромид калия. Если внимательно посмотреть на приведенные в условии схемы, то становится понятно, что

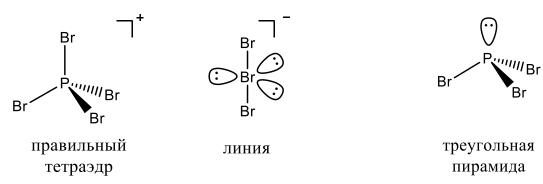
 $\mathbf{D} - \mathrm{KBr}$;

 $E - K_3PO_4$;

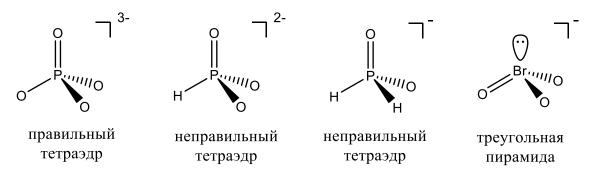
 $\mathbf{F} - \mathbf{K}_2 \mathbf{HPO}_3$;


 $\mathbf{G} - \mathrm{KBrO}_3$;

 $\mathbf{H} - PH_3$;


 $I - KH_2PO_2$.

Уравнения *реакций 1–5*:


- 1) $3PBr_4Br_3 + 30KOH \rightarrow 20KBr + 3K_3PO_4 + KBrO_3 + 15H_2O$
- 2) $PBr_5 + 8KOH \rightarrow 5KBr + K_3PO_4 + 4H_2O$
- 3) $PBr_3 + 5KOH \rightarrow 3KBr + K_2HPO_3 + 2H_2O$
- 4) $3Br_2 + 6KOH \rightarrow KBrO_3 + 5KBr + 3H_2O$
- 5) $P_4 + 3KOH + 3H_2O \rightarrow PH_3 \uparrow + 3KH_2PO_2$
- 2. Для определения геометрии указанных частиц воспользуемся методом Гиллеспи. Метод дает следующие результаты:

Молекула PBr₃

Анионы солей **E**, **F**, **I**, **G**:

3. Соединения **Q** и **W** помимо фосфора и брома содержат еще один элемент, определить который можно, исходя из данных значений массовых долей фосфора и брома в **Q** и **W**. Дополним таблицу, данную в условии:

	ω(P)	ω(Br)	ω(третьего элемента)
Q	13.89%	11.94%	74,17%
W	13.44%	17.34%	69,22%

 ${\bf Q}$ состоит из двух катионов ${\bf R}$, анионов ${\bf T}$ и ${\bf Y}$. Запишем ${\bf Q}$ в виде ${\bf R}_2{\bf T}{\bf Y}$.

W запишем в виде $R_3UT_2Y_2$.

Известно, что **R** и **U** – аналоги [PBr₄]⁺, следовательно **R** и **U** пятиатомные и содержат по одному атому фосфора. **T** может содержать фосфор (тогда его состав, вероятно, [PL₆]⁻, где L – Вг или третий элемент), либо не содержать (тогда его состав [BrL_n]⁻ или [LBr_n]⁻, где L – третий элемент, а n = 2, 4, 6).

Рассмотрим вариант, где **T** имеет состав $[PL_6]^-$. Тогда **Q** состоит из 18 атомов, 3 из которых — атомы фосфора. Запишем **Q** в виде $P_3Br_xL_y$.

$$3: x = \frac{13,89}{30,97}: \frac{11,94}{79,90} = 3: 1 => x = 1$$
 $3 + x + y = 18 => y = 14$
 $M(\mathbf{Q}) = 3 \cdot 30,97 + 79,90 + 14M(L) = 172,81 + 14M(L) = \frac{3 \cdot 30,97}{0,1389}$
 $= 668,90 \frac{\Gamma}{\text{МОЛЬ}}$
 $M(L) = \frac{668,90 - 172,81}{14} = 35,44 \frac{\Gamma}{\text{МОЛЬ}}$

4. Тогда молярная масса третьего элемента (L) в точности соответствует молярной массе хлора. $\mathbf{Q} - P_3 \mathbf{BrCl_{14}}$ или $[PCl_4]_2 [PCl_6] \mathbf{Br}$.

Предполагая, что третий элемент – хлор, рассчитаем состав $\mathbf{W}-P_xBr_yCl_z$.

$$x: y: z = \frac{13,44}{30,97} : \frac{17,34}{79,90} : \frac{69,22}{35,45} = 2:1:9$$

Учитывая, что в \mathbf{W} 6 атомов фосфора, \mathbf{W} – $P_6Br_3Cl_{27}$ или $[PCl_4]_3[PBrCl_3][PCl_6]_2Br_2$.

X	Y	Z	A	В	С	D
P_4	Br_2	C1	$[PBr_4][Br_3]$	PBr ₅	PBr ₃	KBr
E	F	G	Н	I	Q	\mathbf{W}
K ₃ PO ₄	K ₂ HPO ₃	KBrO ₃	PH_3	KH ₂ PO ₂	[PCl ₄] ₂ [PCl ₆]Br	$[PCl_4]_3[PBrCl_3][PCl_6]_2Br_2$

Система оценивания:

1. Вещество A-1 балл. Вещества B-I, X, $Y-\pi o$ 0,5 балла. Уравнение *реакции* I-1,5 балла. Уравнения *реакций* $2-5-\pi o$ 1 баллу, если реакция не уравнена, то за нее 0,25 баллов. Всего 11,5 баллов.

- **2.** За каждую частицу **0,5 балла** за структуру + **0,5 балла** за указание геометрии. Всего **7 баллов**.
 - **3.** Определение элемента $\mathbf{Z} \mathbf{2.5}$ балла.
- **4.** Брутто-формулы Q и W по 0,5 балла. Запись Q и W, соответствующая их ионному строению по 1,5 балла. Всего 4 балла.

Если брутто-формула не записана, но верно записана формула, отражающая ионное строение — **полный балл**.

Задача 3. Металл дуреет от этого газа Решение

- 1. Начать решение задачи следует с определения веществ **A** и X_1 . **A** активный и опасный газ, поэтому, видимо, это галоген (фтор или хлор). Предположив, что массовая доля элемента в X_1 это массовая доля галогена, можно начать перебор соединений. Для формулы \mathbf{MF}_n при n=2 M=58,69 г/моль, что соответствует Ni. Действительно, металлический никель одно из немногих веществ, пассивирующееся фтором при нормальных условиях, поэтому $\mathbf{M} \mathrm{Ni}$, $\mathbf{A} \mathrm{F}_2$, $\mathbf{X}_1 \mathrm{Ni}\mathrm{F}_2$. \mathbf{X}_2 комплексное соединение с октаэдрическим анионом и высшей степенью окисления никеля $K_2[\mathrm{Ni}\mathrm{F}_6]$; тогда $\mathbf{X}_3 \mathrm{Ni}\mathrm{F}_4$. $\mathrm{Ni}\mathrm{F}_4$ разлагается с образованием $\mathrm{Ni}\mathrm{F}_2$, а на промежуточной стадии можно выделить $\mathrm{Ni}\mathrm{F}_3$ (\mathbf{X}_4).
 - **2.** Уравнения *реакций 1-5*:

$$\begin{aligned} Ni + F_2 &\rightarrow NiF_2 \\ NiF_2 + 2F_2 + 2KCl &\rightarrow K_2[NiF_6] + Cl_2 \\ K_2[NiF_6] + 2BF_3 &\rightarrow NiF_4 + 2K[BF_4] \\ 2NiF_4 &\rightarrow 2NiF_3 + F_2 \\ 2NiF_3 &\rightarrow 2NiF_2 + F_2 \end{aligned}$$

3. Вещество X_6 содержит $[NiF_6]^{2-}$ в качестве аниона, а также разлагается на смесь газов, содержащую фтор. Рассчитаем молярную массу смеси газов при температуре -60°C:

$$PM = \rho RT, M = \rho RT/P = 1760.8,314.213,15/(0,6.101325) = 51,3$$
 г/моль

Теперь определим мольную долю фтора в смеси, учитывая, что изменение объема приведено для разных температур. Температуры равны, соответственно, 213,15 К и 133,15 К. Температура меняется в 1,6 раз, значит, общий объем смеси больше объема фтора в 2,669/1,6=1,667 раз. Следовательно, фтор составляет 3/5 от объема газовой смеси. Записав уравнения для молярной массы смеси газов: $m\cdot 2/5+38\cdot 3/5=51,3$, можем понять, что масса второго компонента смеси -71 г/моль. При этом газ с такой массой должен образовываться из тетраэдрического катиона вещества \mathbf{X}_6 , поэтому это не хлор. Другой газ с массой $71-\mathrm{NF}_3$, как раз подходит. Тогда вещество $\mathbf{X}_6-[\mathrm{NF}_4]_2[\mathrm{NiF}_6]$, гексафтороникелат(IV) тетрафтороаммония. Реакция его разложения:

$$[NF_4]_2[NiF_6] \rightarrow 2NF_3 + NiF_2 + 3F_2$$

4. Очевидно, что газ **B** (молярная масса -28), реагирующий с никелем при нагревании - CO. В реакции с никелем при повышенной температуре из 4n молей газообразного CO образуется n молей карбонила $Ni(CO)_4$ (Y_1), что приводит к понижению давления в 4 раза:

$$Ni + 4CO \rightarrow Ni(CO)_4$$

Считая, что реакция протекла количественно, найдем:

$$n(\text{CO})$$
: $n(\text{CO}) = p \cdot V/RT = p \cdot \pi r^2 \cdot h/RT = 0,4 \cdot 101325 \cdot \pi \cdot 0,15^2 \cdot 0,45/R \cdot 298,15 = 0,52$ моль.

Тогда n(Ni) = n(CO)/4 = 0,13 моль. Отсюда найдем массу: $m(\text{Ni}) = 0,13 \cdot 58,69 = 7,63$ г.

5. Определим состав $\mathbf{Y_2}^{2^-}$: кластер из атомов никеля имеет форму тригональной бипирамиды, значит, общая формула $\mathbf{Y_2}^{2^-} - \mathrm{Ni}_5(\mathrm{CO})_n^{2^-}$. На две аксиальные вершины приходится по 3 лиганда, на три экваториальные — по одному; экваториальный фрагмент также содержит 3 дополнительные молекулы CO (по одной над каждым ребром треугольника Ni_3). Итого, формула $\mathbf{Y_2}^{2^-} - \mathrm{Ni}_5(\mathrm{CO})_{12}^{2^-}$ (рис. 1а). Формула же экваториального фрагмента — $\mathrm{Ni}_3(\mathrm{CO})_6$.

Т.к. $\mathbf{Y_3^{2^-}}$ состоит из двух таких экваториальных фрагментов, то его формула – $\mathrm{Ni_6(CO)_{12}^{2^-}}$ (рис. 1б). Аналогично $\mathbf{Y_4^{2^-}}$ – $\mathrm{Ni_9(CO)_{18}^{2^-}}$ (рис. 1в).

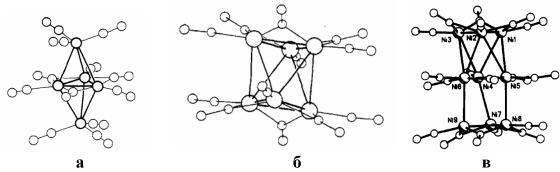


Рисунок 1. Структуры $Ni_5(CO)_{12}^{2-}$ (**a**), $Ni_6(CO)_{12}^{2-}$ (**б**) и $Ni_9(CO)_{18}^{2-}$ (**в**).

6. Уравнение реакции 7:

$$5Ni(CO)_4 + 2Na \rightarrow Ni_5(CO)_{12}^{2-} + 2Na^+ + 8CO$$

Система оценивания:

- **1.** Металл **M** (Ni) и формулы веществ **A**, X_1 - X_4 (F_2 , Ni F_2 , K_2 [Ni F_6], Ni F_4 , Ni F_3) **по 1 баллу**. Всего **6 баллов**.
 - **2.** Уравнения *реакций 1-5* по 0,5 балла. Всего **2,5** балла.
- **3.** Формула соли X_6 , $[NF_4]_2[NiF_6] 1$ балл, название 1 балл, уравнение реакции разложения 0,5 балла. Всего 2,5 балла.
- **4.** Газ **B** (CO) и вещество \mathbf{Y}_1 (Ni(CO)₄) **по 1 баллу**; уравнение *реакции 6* **0,5 балла**, расчет изменения массы **2 балла**. Всего **4,5 балла**.
- **5.** Формулы анионов $\mathbf{Y_2}^{2^-}$ - $\mathbf{Y_4}^{2^-}$ (Ni₅(CO)₁₂²⁻, Ni₆(CO)₁₂²⁻, Ni₉(CO)₁₈²⁻) **по 1 баллу**; структуры анионов $\mathbf{Y_2}^{2^-}$ - $\mathbf{Y_4}^{2^-}$ **по 2 балла**. Всего **9 баллов**.
 - **6.** Уравнение *реакции* 7 0.5 балла.

Задача 4. Благородные доны! Решение

1. Из термохимического цикла:

$$Xe + F_2 \xrightarrow{\Delta_f H(XeF_2)} XeF_{2(TB.)}$$

$$+ E(F_2) \downarrow \qquad \qquad -\Delta H_{eo3z}(XeF_2)$$

$$Xe + 2F \xrightarrow{-2E(Xe-F)} XeF_{2(\Gamma.)}$$

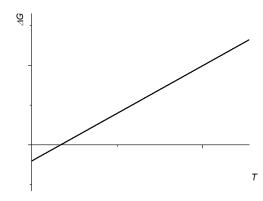
следует, что:

$$\Delta_f H(XeF_2) = E(F_2) - 2E(Xe-F) - \Delta H_{6032}(XeF_2)$$

 $E(Xe-F) = 0.5 \cdot (E(F_2) - \Delta_f H(XeF_2) - \Delta H_{6032}(XeF_2)) =$ **106.75** кДж/моль.

2. Для KrF_2 составляется аналогичный цикл без стадии возгонки, поскольку разыскивается его энтальпия образования в газовой фазе:

$$\Delta_f H(KrF_2) = E(F_2) - 2E(Kr-F) = 67 кДж/моль.$$


3. Реакция $XeF_{2(TB.)} + BF_{3(\Gamma.)} \rightarrow [XeF]^+[BF_4]^-_{(TB.)}$ получается суммированием реакций (5) - (4) + (3) + (2) - (6) и реакции атомизации $XeF_2 \rightarrow Xe + 2F$ (энтальпия которой равна сумме энтальпий возгонки и 2 энергий связи). В этом можно убедиться непосредственным суммированием термохимических уравнений. Получаем в результате:

$$\Delta_r H = \Delta H_5 - \Delta H_4 + \Delta H_3 + \Delta H_2 - \Delta H_6 + \Delta H_{eose}(XeF_2) + 2 E(Xe-F) = -1$$
 кДж/моль.

4. Реакция $XeF_{(r.)} \to XeF^+_{(r.)} + e^-$ получается суммированием: -(1) + атомизация $XeF_{2(r.)} + (5) - (4)$:

$$I(XeF) = -\Delta H_1 + 2E(Xe-F) + \Delta H_5 - \Delta H_4 = 1008.4$$
 кДж/моль.

- **5**. По принципу Ле-Шателье, поскольку в данной реакции присутствуют газы только в левой части уравнения реакции, при увеличении давления равновесие сдвигается вправо (в сторону продуктов).
- **6**. В реакции число молекул газов уменьшается, поэтому $\Delta_r S < 0$. Поэтому энергия Гиббса $\Delta_r G^\circ = \Delta_r H^\circ T \Delta_r S^\circ$ возрастающая линейная зависимость, пересекающая вертикальную ось в точке -1 кДж/моль (энтальпия реакции).

Видно, что энергия Гиббса при больших температурах положительна, а значит, реакцию стоит проводить при низких температурах.

Система оценивания:

- 1. Выражение или верный термохимический цикл **2 балла**, верное значение **2 балла**. Всего **4 балла**.
- **2**. Выражение или верный термохимический цикл **2 балла**, верное значение **2 балла**. Всего **4 балла**.
 - 3. Выражение 3 балла, значение 2 балла. Всего 5 баллов.
 - **4**. Выражение **3** балла, значение **2** балла. Всего **5** баллов.
 - **5**. Ответ с объяснением -2 балла, без объяснения -1 балл. Всего 2 балла.
- 6. Знак энтропии с объяснением 2 балла (без объяснения 1 балл). Качественный вид графика: начало из отрицательной области 1 балл, возрастание и линейность 1 балл. Верный выбор температур 1 балл. Всего 5 баллов.