МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Олимпиада школьников по химии и химической технологии «Потомки Менделеева» 2024/2025 учебный год

Комплект решений экспериментального тура

Контактные данные

сайт: https://malun.kpfu.ru/mendeleev
telegram: https://t.me/potomkimendeleeva
email: ammoniy.olimpiada@mail.ru
тел.: +7(843)233-72-12

9 класс

Решения

Экспериментальная часть

Наиболее вероятно, что жидкость H_{2_2} является раствором перекиси водорода H_2O_2 . Разумно предположить, что общий для 5 из 6 соединений элемент — кислород, а соли Na_{2_3} , Na_{2_3} , $Na_{2_2_3}$ — кислородсодержащие. H_{2_4} , в свою очередь, может быть кислотой. Наконец, бинарное соединение натрия стехиометрии Na_- вероятнее всего, галогенид.

Рассмотрим превращения, наблюдаемые при попарном сливании растворов, а также при действии на них смеси H_2O_2 и $H_2__4$, которая обладает более выраженной окислительной способностью. Для этого предварительно несколько капель каждого неизвестного раствора перенесём в чистые пробирки.

При взаимодействии между собой растворов солей натрия визуальных изменений не наблюдалось. Эффекты, протекающие при действии на растворы кислоты, H_2O_2 и их смеси обобщены в Таблице. В качестве примера рассмотрим тот случай, когда нумерация пробирок совпадает с последовательностью веществ в задании.

	Na_	Na ₂₃	Na _{2_3}	$Na_{2_2_3}$	Na3	H_2O_2	H ₂₄
	(№ 1)	(№2)	(№3)	(№4)	(№5)	(№6)	(№7)
H_2O_2	Образование	Реакция про-	_	Реакция	Слабоин-	_	_
(№5)	желтоватого	текает без		протекает	тенсивное		
	раствора и	видимых эф-		без види-	выделение		
	слабоинтен-	фектов		мых эффек-	газа		
	сивное выде-			тов			
	ление газа						
H_{2}_{4}	_	Выделение	Интен-	Помутнение	_	-	_
(№ 6)		газа с запа-	сивное	раствора и			
		хом	выделе-	выделение			
			ние газа	газа			
$H_2O_2 +$	Образование	Реакция про-	Интен-	Реакция	Слабоин-	_	_
H_{2}_{4}	бурого рас-	текает без	сивное	протекает	тенсивное		
(№5+№6)	твора	видимых эф-	выделе-	без види-	выделение		
		фектов	ние газа	мых эффек-	газа		
				тов			

Окрашивание раствора №1 при взаимодействии с подкисленной перекисью водорода, а также образование желтоватого раствора и слабоинтенсивное выделение газа в нейтральной среде позволяет утверждать, что в пробирке №1 – NaI.

Характерный запах выделяющегося газа, выделяемого при действии кислоты на раствор №2, и его исчезновение при добавлении H_2O_2 указывают, что в пробирке №2 – Na_2SO_3 .

Выделение газа из раствора №3 под действием кислоты позволяет предположить, что в пробирке №3 – Na_2CO_3 .

Одновременное помутнение раствора и выделение газа при взаимодействии $Na_{2_2_3}$ и H_{2_4} указывает на то, что в пробирке $N ● 4 - Na_2 S_2 O_3$. Действительно, растворы N ● 2 или N ● 4 обесцвечивают смесь растворов N ● 1, N ● 6 и N ● 7, окраска которой обусловлена иодом.

Взаимодействие растворов №1, 5 и 7 приводит к окрашиванию раствора, который также обесцвечивается взаимодействием с растворами №2 или №4. Учитывая, что взаимодействие растворов №2, 5 и 7 приводит к образованию окрашенного раствора, который вновь обесцвечивается взаимодействием с раствором №4, раствор №5 содержит иод. Исходя из условий, шесть соединений из семи содержат одинаковый элемент — это кислород. Следовательно, №5 — NaIO₃.

Известно, что шесть соединений из семи содержат одинаковый элемент — это кислород. Другой элемент содержится в трёх из семи соединений — это сера. Следовательно, в пробирке $N = 7 - H_2 SO_4$.

Принимаются любые пути идентификации содержимого неизвестных пробирок.

За каждое идентифицированное вещество по 2 балла (всего 7.2=14 баллов).

Теоретическая часть

- 1. Уравнения реакций, протекающих с видимыми эффектами:
 - 1) $3\text{NaI} + \text{H}_2\text{O}_2 \rightarrow \text{NaI}_3 + 2\text{NaOH}$ (0.5 балла). Образование желтоватого раствора (0.5 балла) или: $2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2$ (0.5 балла) катализируемое NaI. Выделение газа (0.5 балла).

Принимаются также уравнения с образованием иода.

- 2) $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2$ (0.5 балла). Выделение газа (0.5 балла).
- 3) $Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + SO_2$ (0.5 балла). Удушливый кислый запах (0.5 балла).
- 4) $Na_2S_2O_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + S + SO_2$ (0.5 балла). Удушливый кислый запах и образование мутной суспензии (0.5 балла).
- 5) $3NaI + H_2O_2 + H_2SO_4 \rightarrow NaI_3 + Na_2SO_4 + 2H_2O$ (0.5 балла). Образование красно-бурого раствора (0.5 балла).
- 6) $NaIO_3 + 3H_2O_2 \rightarrow NaI + 3O_2 + 3H_2O$ (0.5 балла). Слабоинтенсивное выделение газа (0.5 балла). Принимается также реакция с образованием I_2 или NaI_3 .

В сумме за первое задание – 6 баллов.

2.
$$I_2 + Na_2SO_3 + H_2O \rightarrow 2NaI + H_2SO_4$$
 (0.5 балла)

За реакцию $I_2 + Na_2SO_3 + 2NaOH \rightarrow 2NaI + Na_2SO_4 + H_2O$, подразумевающую предварительное получение раствора взаимодействием растворов NaI и H_2O_2 , также засчитывается 1 балл.

$$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$
 (0.5 балла)

Итого 1 балл.

- 3. Получение NaI:
 - 1) $2Na + I_2 \rightarrow 2NaI$

2) $NaOH + HI \rightarrow NaI + H_2O$

Получение Na₂SO₃:

- 1) $2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O$
- 2) $Na_2CO_3 + 2SO_2 + H_2O \rightarrow 2NaHSO_3 + CO_2$ $2NaHSO_3 + Na_2CO_3 \rightarrow 2Na_2SO_3 + CO_2 + H_2O$

Получение Na₂CO₃:

- 1) $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$
- 2) $NH_3 + CO_2 + H_2O + NaCl \rightarrow NaHCO_3 + NH_4Cl$ $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$

Получение Na₂S₂O₃:

- 1) $Na_2SO_3 + S \rightarrow Na_2S_2O_3$
- 2) $6\text{NaOH} + 4\text{S} \rightarrow 2\text{Na}_2\text{S} + \text{Na}_2\text{S}_2\text{O}_3 + 3\text{H}_2\text{O}$

Получение NaIO₃:

- 1) $3I_2 + 6NaOH \rightarrow NaIO_3 + 5NaI + 3H_2O$
- 2) $NaI + 3H_2O \rightarrow NaIO_3 + 3H_2$ (электролиз без диафрагмы)

Получение Н2О2:

- 1) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$
- 2) $2H_2SO_4 2e^- \rightarrow H_2S_2O_8 + 2H^+$ $H_2S_2O_8 + 2H_2O \rightarrow H_2O_2 + 2H_2SO_4$
- 3) $(CH_3)_2CHOH + O_2 \rightarrow (CH_3)_2CO + H_2O_2$
- 4) Алкилантрагидрохинон + $O_2 \rightarrow$ Алкилантрахинон + H_2O_2

Получение H₂SO₄:

- 1) $3SO_2 + 2HNO_3 + 2H_2O \rightarrow 3H_2SO_4 + 2NO$
- 2) $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$

0.5 балла за каждую реакцию, итого 3.5 балла

4. Смесь из H₂O₂ и H₂SO₄ – «Пиранья» (0.5 балла).

Итого 11 баллов за теоретическую часть.

Общая сумма баллов – 25.

10 класс

Решения

Экспериментальная часть

Выполнение работы:

2 балла – полностью соблюдена техника безопасности

3 балла – эксперимент проведен в соответствии с методикой

Качество продукта:

5 баллов — цвет продукта желтый или золотисто-желтый, допускается легкий зеленоватый оттенок

3 балла – цвет продукта от салатового до зеленого

1 балл – цвет продукта от тёмно-зеленого до черного

Количество продукта:

Оценивается самый большой выход среди всех участников и принимается за 100%.

100 - 80% от максимального выхода — **5 баллов**

79-60% от максимального выхода — **4 баллов**

59 - 40% от максимального выхода – **3 баллов**

39 - 20% от максимального выхода – **2 баллов**

19-10% от максимального выхода — **1 баллов**

Менее 10% от максимального выхода – 0 баллов

Итого: 15 баллов за эксперимент

Теоретическая часть

1)

3
$$\longleftrightarrow$$
 + KBrO₃ \longleftrightarrow 3 \longleftrightarrow + KBr + 3H₂O

Либо

6 H + 2KBrO₃ + H₂SO₄
$$\longrightarrow$$
 6 H + K₂SO₄ + 2HBr + 6H₂O

Оба варианта реакции приемлемы, но в случае первого варианта необходимо наличие серной кислот в качестве среды.

Правильно написаны все компоненты реакции (реагенты и продукты) и коэффициенты перед ними — ${f 2}$ балла

Правильно написаны все компоненты реакции (реагенты и продукты), но коэффициенты неверны либо отсутствуют – 1 балл

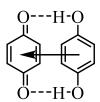
2) Нет, нельзя. Использование более сильных окислителей приведет к образованию продуктов дальнейшего окисления хинона. Зачет по смыслу.

Даны правильный ответ и обоснование – 1 балла

3) Подставим значения активностей хинона, гидрохинона, а также ионов водорода в уравнение Нернста.

$$E = E^{\circ} + \frac{2{,}3RT}{2F} lg \frac{a_{Q}*(a_{H^{+}})^{2}}{a_{QH_{2}}}$$

Учитывая, что
$$aQ \approx aQH_2, E=E^\circ + \frac{2,3RT}{F} \lg a_{H^+}, E=E^\circ - \frac{2,3RT}{F} pH$$


Правильно записана зависимость потенциала хингидронного электрода от рH-2 балла

Если в уравнении Нернста коэффициент перед логарифмом указан не в общем виде, однако с указанием на условия – 1 балл

Если в уравнении Нернста коэффициент перед логарифмом указан не в общем виде без указания условий – 0 баллов

Если записана зависимость потенциала хингидронного электрода от концентрации или от активности ионов H^+ , но не записана от р $H-\mathbf{0}$ баллов

4) Хингидрон имеет структуру сэндвичего типа и представляет из себя комплекс хинона и гидрохинона (в соотношении 1:1), с переносом заряда. Комплексы с переносом заряда часто интенсивно окрашены.

Любое упоминание комплекса с переносом заряда – 1 балл

5) При pH > 8 отношение aQ/aQH_2 не является постоянной величиной как вследствие окисления хинона растворенным O_2 , так и в результате образования анионной формы гидрохинона. При нестехиометрическом соотношении хинона и гидрохинона потенциал не проявляет воспроизводимой зависимости от показателя кислотности, что делает электрод не применимым.

Использование сильных окислителей и восстановителей также приводит к изменению соотношения aQ/aQH_2 .

6

Дано правильное обоснование неприменимости электрода как при pH больше 8, так и при использовании сильных окислителей и восстановителей – **2 балла**

Дано правильное обоснование неприменимости электрода при рН больше 8, но неверно объяснено влияние окислителей и восстановителей -1 балл

Дано неправильное обоснование неприменимости электрода при рН больше 8, но верно объяснено влияние окислителей и восстановителей – **1 балл**

Даны неправильные обоснования неприменимости как при рН больше 8, так и при использовании сильных окислителей и восстановителей – $\mathbf{0}$ баллов.

6)
$$E = E_{xz} - E_{xc} = E^{\circ}_{xz} + 0.059 \log[H^{+}] - (E^{\circ}_{xc} + 0.059 \log([Cl^{-}]^{-1})) = E^{\circ}_{xz} - E^{\circ}_{xc} + \log([H^{+}] \cdot [Cl^{-}])$$

Учитывая, что соляная кислота является сильной и диссоциирует полностью, то:

$$E = E_{xz} - E_{xc} = E^{\circ}_{xz} + 0.059 \lg[H^{+}] - (E^{\circ}_{xc} + 0.059 \lg([Cl^{-}]^{-1})) = E^{\circ}_{xz} - E^{\circ}_{xc} + 0.059 \lg(C_{HCl})^{2}$$

$$0,322 = 0,699 - 0,222 + 0,059 \log(C_{HCl}^2)$$

Откуда
$$C_{HCl} = 0.0485 \text{ M}, pH = 1.31$$

Правильно вычислена ЭДС ячейки, все уравнения записаны верно – 2 балла

Уравнение для расчета ЭДС ячейки записано верно, но присутствует арифметическая ошибка – **1 балл**

Найдена концентрация НСІ, но рН посчитан неверно – 1 балл

Ответ получен верно, но без обоснования – 0 баллов

Ответ получен неверно – 0 баллов

Итого: 10 баллов за теоретическую часть

11 класс

Решения

Экспериментальная часть

Согласно экспериментально полученным данным, предэкспоненциальный множитель A в уравнении Аррениуса для реакции омыления этилацетата щелочью равен $A = 6.0 \cdot 10^8$ л/(моль·мин), а энергия активации реакции – $E_a = 45.4$ кДж/моль. Из этих данных можно получить температурную зависимость константы скорости реакции:

T, °C	k, л/(моль·мин)	T, °C	k, л/(моль·мин)
15	3.53	23	5.89
16	3.77	24	6.27
17	4.02	25	6.67
18	4.29	26	7.09
19	4.58	27	7.53
20	4.88	28	8.00
21	5.20	29	8.50
22	5.54	30	9.02

Перед началом экспериментального тура измеряется температура в помещении. Для каждой из рассчитанных констант (при 15, 30, 45, 60 минутах и средней) определяется величина отклонения от значения в таблице при соответствующей температуре:

$$\mathcal{S} = \frac{\left|k_{\text{лит}} - k_{\text{эксп}}\right|}{k_{\text{лит}}} \cdot 100\%$$

Для того, чтобы учесть вариации температуры в ходе выполнения эксперимента и погрешности измерений, вводится следующая шкала баллов, в зависимости от отклонения каждой константы от литературных значений:

0-30 % – 3 балла

30-40 % – 2 балла

40-50 % - 1 балл

Больше 50 % – 0 баллов

Теоретическая часть

1. Для расчета энергии активации реакции омыления этилацетата необходимо преобразовать уравнение Аррениуса следующим образом:

$$E_{\rm a} = \frac{\ln(k_1 / k_2) R T_1 T_2}{T_1 - T_2}$$

2. Псевдопервый порядок реакции можно наблюдать при избытке одного из реагентов реакции – этилацетата или щелочи:

$$v = -\frac{dC}{dt} = k(C_{\text{men}}^0 - x)(C_{\text{9$\phi up}}^0 - x) \approx kC_{\text{men}}^0(C_{\text{9$\phi up}}^0 - x) = k'(C_{\text{9$\phi up}}^0 - x)$$

- 3. Аликвота реакционной смеси разбавляется дистиллированной водой для уменьшения концентраций реагентов и замедления скорости реакции. Это необходимо для того, чтобы реакция практически остановилась перед титрованием реакционной смеси, иначе определение концентрации будет неверным.
- 4. Для раствора этилацетата используется стеклянная пробка вместо резиновой по причине возможного его возможного взаимодействия с резиной. Молекулы этилацетата способны проникать внутрь полимерных соединений, вызывая их расширение с последующим разрушением структуры. Это может привести к загрязнению раствора продуктами разложения резины и ухудшению герметичности сосуда. Стекло же с этилацетатом не взаимодействует.

Критерии оценивания	Баллы
По 3 балла за каждое экспериментальное и за усредненное значение константы скорости	15
По 2 балла за каждый вопрос	10