МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Олимпиада школьников по химии и химической технологии «Потомки Менделеева» 2024/2025 учебный год

Комплект решений теоретического тура

10-й класс

Контактные данные

сайт: https://malun.kpfu.ru/mendeleev
telegram: https://t.me/potomkimendeleeva
email: ammoniy.olimpiada@mail.ru
тел.: +7(843)206-54-04 доб. 5403

Решение задачи 10-1 (Курамшин Б.К.)

- 1. $[Kr]4d^{10}$.
- **2**. Атомы кислорода в тетраэдрических пустотах имеют КЧ 4, значит, на 2 атома серебра приходит 4 связи Ag–O. Значит, KV(Ag) = 2.
- 3. Если серебро в составе A имеет KЧ 4, то, вероятнее всего, оно содержит тиосульфатный комплексный анион $[Ag(S_2O_3)_4]^{7-}$. По заряду аниона видно, что, с учетом соотношения, он компенсируется 9 однозарядными катионами и 2 однозарядными анионами. В условиях синтеза это могут быть только аммоний и хлорид-ион. Итак, $A (NH_4)_9[Ag(S_2O_3)_4]Cl_2$.

Структурная формула аниона в состае А:

4. Структурная формула составляется в соответствии с наличием дифенилфосфиновых групп и двух десятичленных циклов: за вычетом 4 групп P(C₆H₅)₂ остается 10 атомов углерода и 20 атомов водорода, что соответствует 10 CH₂-группам.

Таким образом B - 1,5-бис(дифенилфосфино)пентан.

5. Молярная масса соединения в расчете на 1 атом серебра равна 107.87/0.545 = 197.93 г/моль, то есть на анион приходится 90 г/моль. С учетом того, что анион, по-видимому, плоский, вероятно, он содержит атомы 2 периода. Комбинации из В и С, О и F не дают 90 г/моль при целых числах атомов, остаются две возможные комбинации: C_4N_3 и N_3O_3 . В последнем случае не удается нарисовать структуру моноаниона с осью симметрии 3 порядка, в которой хотя бы один атом оказывался бы в узлах графитоподобной структуры. Тогда как для C_4N_3 возможна структура $C(CN)_3$:

Вследствие резонанса, три фрагмента -CN в структуре эквивалентны и у структуры есть симметрия третьего порядка.

Таким образом Γ – $AgC(CN)_3$.

6. Структура слоя **Γ**:

- 7. Структура построена как сетка из ромбоподобных циклов, включающих ответвления из атомов серебра и цианид-ионов. Каждый ромбоподобный цикл содержит:
 - 4 Ад, принадлежащих 4 циклам (входят в ссостав цикла с коэффициентом 1/4);
 - 12 Ag, принадлежащих 2 циклам (входят в ссостав цикла с коэффициентом 1/2);
 - 8 Ад в ответвлениях, которые также относятся к 2 циклам (коэффициент 1/2);
 - 16 CN, принадлежащих 2 циклам (коэффициент 1/2);
 - 16 CN в ответвлениях, которые также относятся к 2 циклам (коэффициент 1/2).

Всего с учетом коэффициентов получается, что каждый цикл имеет состав: 11 Ag, 16 CN. То есть x = 11, y = 16.

8. На каждый фрагмент $Ag_{11}(CN)_{16}^{5-}$ по условию приходится $1 \ Ag(CN)_2^-$, $2 \ молекулы CH_3CN$. Если катион металла — \mathbf{M}^{n+} , то формула соединения: $\mathbf{M}_6[Ag_{11}(CN)_{16}]_n[Ag(CN)_2]_n \cdot 2nCH_3CN$. Формульная единица соединения в таком виде содержит 20n атомов азота, то есть на каждый моль \mathbf{J} выделяется 10n моль N_2 .

Количество выделившегося азота равно:

$$n(N_2) = 92.54 \cdot 10^{-6} \cdot 101325/(8.314 \cdot 298) = 3.785 \cdot 10^{-3}$$
 моль.

Значит, в 1 г Д содержится $3.785 \cdot 10^{-3}/(10n)$ моль вещества, то есть его молярная масса равна:

$$M(\mathbf{\Lambda}) = \frac{1}{3.785 \cdot 10^{-3} / 10n} = 2642n = 6M + 1602.84n + 159.90n + 41.05 \cdot 2n$$

M = 132.86n.

Видно, что M – это Cs. Д – $Cs_6[Ag_{11}(CN)_{16}][Ag(CN)_2] \cdot 2CH_3CN$.

Система оценивания

1	Электронная конфигурация	0.5 балла
2	КЧ серебра	0.5 балла
3	Формула А – 1 б	2 балла
	Структурная формула аниона – 1 б	
4	Структура Б – 1 б	2 балла
	Название Б – 1 б	
5	Формула Г – 1 б	2 балла
	Структура аниона – 1 б	
6	Фрагмент структуры Г	2 балла
7	Значения <i>х</i> и <i>у</i> – по 1.5 б	3 балла
8	Формула Д – 1.5 б	3 балла
	Металл M – 1.5 б	

Итого 15 баллов

Решение задачи 10-2 (Нуритдинов М.М. Маляров С.С.)

Для определения состава веществ $\mathbf{Hp_1} ext{-}\mathbf{Hp_5}$ необходимо внимательно изучить способы получения первых трех веществ. Из данных параграфов можно сделать вывод, что все эти вещества состоят из натрия и еще двух неизвестных элементов (\mathbf{X} — бинарный газ + \mathbf{Na} = трехэлементное соединение).

Определим состав $\mathbf{Hp_1}$. Во-первых, найдем металл \mathbf{M} и его гидроксид:

$$\frac{m(\mathbf{M})}{m(M(OH)_n} = \frac{M(\mathbf{M})}{M(\mathbf{M}) + 17.02n} = = \frac{1.00 \text{ r}}{1.52 \text{ r}}$$

n	M	Металл
1	32.69	×
2	65.38	Zn
3	98.08	×

Следовательно, металл $\mathbf{M} - \mathbf{Z}\mathbf{n}$.

Из данных о том, что продуктами первой реакции являются только гидроксид цинка и искомое вещество, можно сделать вывод: весь натрий из гидроксида натрия идет на образование **Hp**₁. Найдем массу NaOH и составим уравнение.

$$n(NaOH) = 2n(Zn(OH)_2 = 2 \bullet \frac{1.52 \ \Gamma}{65.39 \ ^{\Gamma}/_{\text{МОЛЬ}} + 2 \bullet 17.02 \ ^{\Gamma}/_{\text{МОЛЬ}}} = 0.0306 \ \text{моль}.$$
 $m(NaOH) = 40.19 \ ^{\Gamma}/_{\text{МОЛЬ}} \bullet 0.0306 \ \text{моль} = 1.223 \ \Gamma \Rightarrow$

Уравнение: $1.00 \, \Gamma + 1.223 \, \Gamma + X = Y + 1.52 \, \Gamma$, где X - в-во X, $Y - Hp_1$.

Используя данные таблицы о массе полученных веществ, решим приведенное выше уравнение: $1.00 \, \Gamma + 1.223 \, \Gamma + 0.736 n = 1.00 n + 1.52 \, \Gamma \Rightarrow n = 2.663 \Rightarrow m(\textbf{X}) = 1.960 \, \Gamma, \, m(\textbf{Hp_1}) = 2.663 \, \Gamma$

Определим газ **X**:

К (коэф перед X)	$M(X)$, $\Gamma/_{MOЛЬ}$	Газ Х
1	128.10	×
2	64.05	SO_2
3	42.70	$C_3H_6(\times)$
4	32.03	O ₂ (×), CH ₃ OH (×)

Газ $X - SO_2$, тогда $Hp_1 - Na_2S_2O_4$. Проверим это: $M(Na_2S_2O_4) \cdot 0.5n(NaOH) = 2.664 \ \Gamma.$

$$Zn + 2NaOH + 2SO_2 \rightarrow Na_2S_2O_4 + Zn(OH)_2$$

Определим соединение **A**. Молярная масса **Y** = $1.375 \cdot 32.00 \,^{\Gamma}/_{\text{МОЛЬ}} = 44 \,^{\Gamma}/_{\text{МОЛЬ}} \Rightarrow$ **Y** – **CO**₂. Тогда соль **A** должна содержать натрий, углерод и кислород. Под это описание подходят карбонат натрия и гидрокарбонат натрия. Проверим это, используя данные титрования:

$$Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$$

$$2NaHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$$

$$C_1 \cdot V_1 = C_2 \cdot V_2 \Rightarrow 10 \text{ мл} \cdot 0.018 \text{ M} = 18 \text{ мл} \cdot 0.010 \text{ M} \Rightarrow \text{отношение 1 к 1} \Rightarrow \mathbf{A} - \mathbf{Na_2CO_3}$$

Используя таблицу, определим соединение **Hp**₂:

$$\frac{m(SO_2)}{m(Hp_2)} = \frac{0.674}{1.00k} = \frac{M(SO_2)}{nM(Na) + mM(S) + lM(O)}$$

К (коэф.)	$M (\mathbf{Hp}_2), \Gamma/_{MOЛЬ}$	В-во Нр2
1	95.06	≈ Na ₂ SO (×)
2	190.11	Na ₂ S ₂ O ₅
3	285.18	$\approx Na_2S_3O_9(\times)$
4	380.23	×

 \Rightarrow Hp₂-Na₂S₂O₅

Определим оксид **Z**:

$$\frac{36.81\%}{16n} = \frac{100\% - 36.81\%}{M} \Rightarrow$$
$$\Rightarrow \mathbf{Z} - \mathbf{MnO}_2$$

M Оксид Z 0.5 13.73 Χ 1 27.47 1.5 41.20 X 2 54.93 MnO₂ 2.5 68.67 82.40

Используя данные о титровании, найдем кол-во вещества карбоната натрия:

$$n(Na_2CO_3) = 0.01 \,\pi \bullet 0.6 \, {}^{\text{МОЛЬ}}/_{\Pi} = 0.006 \,\mathrm{моль}, n(CO_2) = \frac{0.0672 \pi}{22.4 \, {}^{\Pi}/_{\mathrm{MOЛЬ}}} = 0.003 \,\mathrm{моль} \,\Rightarrow$$

Часть углерода (карбонат-ионов) содержится в веществе **С**. Найдем его молярную массу:

$$n((Na_2CO_3) - n(CO_2)) = n(C) = 0.003 \text{ моль} \Rightarrow M(C) = \frac{0.611 \text{ г}}{0.003 \text{ моль}} = 203.67 \text{ }^{\Gamma}/_{\text{МОЛЬ}}$$

Данная молярная масса намного больше, чем $M(MnCO_3)$. Тогда можно предположить, что в ходе реакции образуется основный карбонат марганца $Mn_n(OH)_mCO_3$.

$$M(Mn_n(OH)_m) = 203.67 \, ^{\Gamma}/_{MOJIb} - 60.01 \, ^{\Gamma}/_{MOJIb} = 143.66 \, ^{\Gamma}/_{MOJIb}$$

Методом подбора несложно найти, что искомое вещество $C - Mn_2(OH)_2CO_3$.

Используя полученные данные, найдем вещество **Нр**₃:

$$\frac{m(SO_2)}{m(Hp_3)} = \frac{0.622}{1.00k} = \frac{M(SO_2)}{nM(Na) + mM(S) + lM(O)}$$

Также можно заметить, что 206 - 190 = 16, что соответствует молярной массе одного атома кислорода. **Hp**₃ – **Na**₂**S**₂**O**₆.

К (коэф.)	M (Hp ₃), $\Gamma/_{MOЛЬ}$	В-во Нр 3
1	103.01	×
2	206.01	$Na_2S_2O_6$
3	309.02	Na ₃ S ₂ O ₁₁ (такое соединение не может существовать)

$$Na_2CO_3 + 2SO_2 \rightarrow Na_2S_2O_5 + CO_2$$

 $MnO_2 + 2SO_2 \rightarrow MnS_2O_6$

$$2MnS_2O_6 + 2Na_2CO_3 + H_2O \rightarrow 2Na_2S_2O_6 + Mn_2(OH)_2CO_3 + CO_2$$

Опираясь на вещества $\mathbf{Hp_1}\mathbf{\cdot Hp_3}$, можно сделать вывод, что кислая соль \mathbf{D} – гидросульфат натрия ($\mathbf{NaHSO_4}$). Это можно проверить по реакциям 5 и 7.

В результате реакции 5 выделяется вода, так как водорода нет в **Hp**₄. Найдем искомое вещество:

$$\frac{m(Hp_4)}{m(H_2O)} = \frac{1.00 \text{ r}}{1.00 \text{ r} - 1.0811 \text{ r}} = -\frac{M(Hp_4)}{k \cdot M(H_2O)} \Rightarrow$$

k (кол-во моль воды на 1 моль Нр 4)	$M(\mathbf{Hp_4}), \Gamma/_{MOЛЬ}$	В-во Нр 4
0.5	111.07	\approx Na ₂ SO ₂ (×)
1	222.15	$Na_2S_2O_7$
1.5	333.22	×

$$\frac{m(\mathbf{H}\mathbf{p_4})}{m(\mathbf{D})} = \frac{1.00 \text{ r}}{1.0811 \text{ r}} = \frac{M(\mathbf{H}\mathbf{p_4})}{k \cdot M(\mathbf{D})}$$

k (кол-во моль D на 1 моль Hp ₄)	$M(\mathbf{Hp_4}), \Gamma/_{MOЛЬ}$	$M(\mathbf{D}), \Gamma/_{MOЛЬ}$	В-во D
1	111.07	120.08	NaHSO ₄
2	222.15	120.08	NaHSO ₄

Из двух вышеприведённых таблиц можно сделать вывод, что $D-NaHSO_4$, а $Hp_4-Na_2S_2O_7$ (обратите внимание на первые столбцы, там получается несоответствие).

Определим соединение **Hp**5:

$$\frac{m(\boldsymbol{H}\boldsymbol{p_5})}{m(\boldsymbol{D})} = \frac{1.00 \text{ r}}{1.0084 \text{ r}} = \frac{M(\boldsymbol{H}\boldsymbol{p_5})}{k \cdot M(\boldsymbol{D})}$$

k (коэф. перед D)	$M(\mathbf{Hp}_5)$, $\Gamma/_{MOЛЬ}$	В-во Нр 5
1	119.07	×
2	238.12	$Na_2S_2O_8$
3	357.20	×

 $Hp_5-Na_2S_2O_8$. Этот факт подтверждается выделением кислорода при его термическом разложении.

 $2NaHSO_4 \rightarrow Na_2S_2O_7 + H_2O$

 $2Na_2S_2O_8 \rightarrow 2Na_2S_2O_7 + O_2$

 $2NaHSO_4 \xrightarrow{\xi} Na_2S_2O_8 + H_2$

Комплексное соединение **E**, вероятнее всего, содержит ионы серебра, фенантролиновые лиганды и пероксодисульфат-анионы. Молярная масса **E** на 1 атом серебра: $\frac{107.87 \, ^{\Gamma}/_{\text{МОЛЬ}}}{0.1633} = 660.16 \, ^{\Gamma}/_{\text{МОЛЬ}}$. На анион и лиганды приходится $660.56 \, ^{\Gamma}/_{\text{МОЛЬ}} - 107.87 \, ^{\Gamma}/_{\text{МОЛЬ}}$ = $552.69 \, ^{\Gamma}/_{\text{МОЛЬ}}$. Молярная масса 1 молекулы фенантролина равна $180.19 \, ^{\Gamma}/_{\text{МОЛЬ}}$. Остаток $192 \, ^{\Gamma}/_{\text{МОЛЬ}}$, соответствующий персульфат-аниону, получается при вычитании двух фенантролиновых лигандов. Тогда **E** - [Ag(phen)₂]S₂O₈. Интересно, что серебро в данном соединении имеет степень окисления +2. Реакция получения имеет вид:

$$2AgNO_3 + 3Na_2S_2O_8 + 4phen \rightarrow 2[Ag(phen)_2]S_2O_8 + 2Na_2SO_4 + 2NaNO_3$$

Используя кристаллографические данные вещества ${\bf F}$, определим его формулу:

$$V_{\text{AH}} = abc \sin \beta = 2034.056 \text{ Å}^3 = 2034.056 \cdot 10^{-24} \text{cm}^3$$

$$\rho(\mathbf{F}) = \frac{Z \cdot M(\mathbf{F})}{N_a \cdot V_{\text{gy}}} = 1.583 \, ^{\Gamma} / _{\text{CM}^3} = \frac{2M(\mathbf{F})}{6.022 \cdot 10^{23} \cdot V_{\text{gy}}} \Rightarrow M(\mathbf{F}) = 969.52 \, ^{\Gamma} / _{\text{МОЛЬ}}$$

Поскольку комплекс биядерный, он точно содержит 2 атома Sm (150.36 г/моль). Также в его состав должен входить лиганд C_5Me_5 (135.25 г/моль), связывающийся с атомом комплексообразователя посредством π -взаимодействия. В условии задачи также сказано, что в состав \mathbf{F} входят 2 типа лигандов с разным видом связывания M-L. Значит, второй лиганд должен быть σ -лигандом (σ -L), точно содержащим серу (вероятно, в составе фрагментов SO_2). Пусть в состав комплекса входят 2 атома Sm, x лигандов C_5Me_5 и y σ -L.

Получаем следующее уравнение:

$$v \cdot M(\sigma - L) = 969.52 - 2 \cdot 150.36 - 135.25x = 668.80 - 135.25x$$

Пусть y=1. Также примем, что на σ -лиганд приходится некоторое количество фрагментов (или молекул) SO_2 , тогда составим таблицу:

х	M(σ-L),	Формула лиганда σ-L		
	г/моль			
1	533.55	8.33 фрагментов SO_2 – не подходит		
2	398.30	6.22 фрагментов SO_2 – не подходит		
3	263.05	4.11 фрагментов SO ₂ – не подходит		
4	127.80	1.99 фрагментов SO ₂ – это очень близко к 2. Скорее всего, в состав		
		комплекса входит не сам SO ₂ , так как он связывался бы с атомами		
		Sm по π-типу, а π-лиганд у нас уже есть. Следовательно, формула		
		лиганда $S_2O_4^{2-}$.		
5	-7.45	С этого момента дальнейший перебор теряет смысл, так как нас не		
		интересуют отрицательные молярные массы.		

Таким образом, $\mathbf{F} - [Sm_2(\mu_2 - S_2O_4)(\eta^5 - C_5Me_5)_4]$. Структурная формула \mathbf{F} :

X	Y	Z	A	В	C	D
SO ₂	CO ₂	MnO ₂	Na ₂ CO ₃	MnS ₂ O ₆	Mn ₂ (OH) ₂ CO ₃	NaHSO ₄
\mathbf{E}	\mathbf{F}	Hp_1	Hp_2	Hp_3	Hp_4	Hp_5

Уравнения реакций:

$$Zn + 2NaOH + 2SO_2 \rightarrow Na_2S_2O_4 + Zn(OH)_2$$

$$Na_2CO_3 + 2SO_2 \rightarrow Na_2S_2O_5 + CO_2$$

$$MnO_2 + 2SO_2 \rightarrow MnS_2O_6$$

$$2MnS_2O_6 + 2Na_2CO_3 + H_2O \rightarrow 2Na_2S_2O_6 + Mn_2(OH)_2CO_3 + CO_2$$

$$2NaH\$O_4 \rightarrow Na_2S_2O_7 + H_2O$$

$$2Na_2S_2O_8 \rightarrow 2Na_2S_2O_7 + O_2$$

$$2NaHS_{2}O_{4} \rightarrow Na_{2}S_{2}O_{8} + H_{2}$$

$$2AgNO_3 + 3Na_2S_2O_8 + 4phen \rightarrow 2[Ag(phen)_2]S_2O_8 + 2Na_2SO_4 + 2NaNO_3$$

Если посмотреть на ряд соединений Hp_1 - Hp_5 , то можно легко сделать вывод, что соединение $Hp_0 - Na_2S_2O_3$ или $Na_2S_2O_3$ - $5H_2O_3$.

Способы получения тиосульфата натрия	Обязательное условие
$Na_2SO_3 + S \rightarrow Na_2S_2O_3$	Указание температуры
	(кипящий р-р)*
$2Na_2S + 2O_2 + H_2O \rightarrow 2NaOH + Na_2S_2O_3$	
$4S + 6NaOH \rightarrow Na_2S_2O_3 + 2Na_2S + 3H_2O$	Указание температуры (кипящий p-p)*
$4SO_2 + 2H_2S + 6NaOH \rightarrow 3Na_2S_2O_3 + 5H_2O$	(кипащий р-р)

(В англоязычной литературе Нуро – обозначение тиосульфата натрия)

Структуры веществ **Нр**₀₋₅:

Na ₂ S ₂ O ₃ (Hp ₀)	Na ₂ S ₂ O ₄ (Hp ₁)	Na ₂ S ₂ O ₅ (Hp₂)
2Na ⁺ $\begin{bmatrix} S \\ S \\ O \end{bmatrix}^{2-}$	$2Na^{+}\begin{bmatrix} O & O & O & O \\ O & S & -S & -O & O \\ O & O & O & O \end{bmatrix}^{2-}$	2Na ⁺ [
Na ₂ S ₂ O ₆ (Hp ₃)	Na ₂ S ₂ O ₇ (Hp ₄)	Na ₂ S ₂ O ₈ (Hp ₅)
O O O Na ⁺ Na ⁺ O S S O	0, 0 0, 0 Na ^{+ -} 0 S 0 Na ⁺	O O Na ⁺ -O S O S O Na ⁺

Система оценивания

1	Формулы соединений A-D , X , Y , Z , Hp ₁ - Hp ₅ - по 0.5 б	6 баллов
2	Формулы соединений ${f E}$ и ${f F}$ – по 0.5 б	1.5 балла
	Структурная формула $\mathbf{F} - 0.5$ б	
3	Уравнения реакций 1-8 - по 0.5 б	4 балла
4	Верный способ получения $\mathbf{Hp_0} - 0.5$ б (без указания температуры	0.5 балла
	-0.3 6)	
5	Структуры анионов Hp₀-Hp₅ – по 0.5 б <i>(сплошные связи O-Na</i> –	3 балла
	штраф 0.2 б)	

Итого 15 баллов

Решение задачи 10-3 (Нуритдинов М. М.)

Цепочка синтеза X с расшифрованными веществами приведена ниже:

На первой стадии натриевая соль 4-хлорфенола атакует атом серы сульфурилхлорида, образуя монозамещённое вещество **A**. Дизамещённый вариант отбрасываем, так как в приведённой в условии брутто-формуле **C** всего 10 атомов углерода.

На второй стадии синтеза происходит замещение связанного с серой хлора на аминогруппу под действием аммиака. На третьей стадии раскрывается 4-членный гетероцикл и образуется вещество \mathbf{C} по следующему механизму:

Электрофильный сложноэфирный атом углерода в лактоне подвергается атаке нуклеофильной аминогруппы вещества ${\bf B}$ с последующим раскрытием гетероцикла лактона. На следующей стадии механизма происходит перенос протона и таутомеризация. Здесь стоит заметить, что вещество ${\bf C}$ в форме сопряжённого енола также является устойчивым и засчитывается в качестве верного ответа.

В последней стадии синтеза X участвуют два эквивалента КОН. Сначала гидроксиданию атакует атом серы, что ведёт к элиминированию аниона 4-хлорфенола и образованию серосодержащего фрагмента, который претерпевает внутримолекулярную циклизацию. В последствие происходит элиминирование гидроксильной группы и образование калиевой соли – ацесульфама калия.

Цепочка синтеза Y с расшифрованными веществами приведена ниже:

Определить вещество \mathbf{D} можно исходя из открытой структуры в схеме, а также из условий первой стадии превращения \mathbf{D} в \mathbf{E} : окисление кислородом с катализатором V_2O_5 обычно проводят для бензола или нафталина с получением малеинового или фталевого ангидрида соответственно. Приведённое на схеме вещество является производным фталевого ангидрида. Следовательно, \mathbf{D} — нафталин, $C_{10}H_8$. Под действием $NH_3/NaOH$ происходит раскрытие ангидрида с образованием соли \mathbf{E} . В процессе получения \mathbf{F} хлорацетат натрия

присоединяется к изображённому на схеме соединению через аминогруппу, а далее протекает аналог конденсации Кляйзена.

На следующем этапе протекает декарбоксилирование натриевой соли β -кетокислоты в кислой среде с образованием вещества \mathbf{G} . Под действием кислорода воздуха оно претерпевает окислительную димеризацию, на что указывает резкое изменение числа циклов. Окислительный характер димеризации можно подтвердить, исходя из массовой доли углерода в \mathbf{Y} , приведённой в условии. Простейшая формула вещества в расчёте на 8 атомов углерода имеет вид C_8H_5NO , тогда как у \mathbf{G} - C_8H_7NO . Димеризация должна протекать таким образом, чтобы образовалась цепь сопряжения, дающая соединению окраску (о наличии окраски свидетельствуют приведённые ниже спектры). Тогда брутто-формула $\mathbf{Y} - C_{16}H_{10}N_2O_2$, а наиболее вероятная структура реализуется при образовании связи между атомами углерода между карбонильной и аминогруппами. Вещество \mathbf{Y} имеет тривиальное название " \underline{u} и является красителем.

Индиго имеет синий цвет, поэтому его максимум поглощения должен приходиться на жёлтую часть спектра (дополнительный к синему), что примерно соответствует диапазону длин волн 580-620 нм. Это спектр № 1.

Цепочка синтеза **Z** с расшифрованными веществами приведена ниже:

Вещество **H**, дегидробензол, очень неустойчиво и получается в результате дегалогенирования на первой стадии, вступая далее в реакцию Дильса-Альдера. На выходе получается вещество I_1 — нафтол-1. Соответственно, его изомер, I_2 — нафтол-2.

Далее возникает вопрос о структурах \mathbf{J} и \mathbf{K} . \mathbf{K} является продуктом азосочетания. Поскольку на стадии \mathbf{K} - \mathbf{L} используется смесь $\mathrm{HCl/NaNO_2}$, стоит предположить, что именно \mathbf{K} является таким продуктом. Тогда \mathbf{J} — некое промежуточное на в ходе образования \mathbf{K} вещество, изомерное ему. Следовательно, стадия \mathbf{J} - \mathbf{K} — перегруппировка под действием кислоты. Тогда остаётся предположить, что при получении \mathbf{J} азот аминогруппы атакует терминальный азот диазогруппы и возникает группировка из трёх идущих подряд атомов азота.

Для расшифровки структурной формулы \mathbf{Z} необходимо определить, по какому атому углерода нафтола-2 пойдёт реакция. Самым активным α -атомом углерода будет тот, который расположен наиболее близко к соседнему бензольному кольцу. Получившееся вещество \mathbf{Z} имеет необычное тривиальное название " $Cy\partial ah\ III$ ".

У азокрасителей имеется яркое окрашивание проявляется благодаря наличию в них длинной сопряжённой системы двойных связей, в состав которой входит одна или более азогруппа, являющейся сильным хромофором. Хромофорная группа поглощает свет на определённой длине волны и, таким образом, определяет цвет молекулы.

Система оценивания

1	Правильные структурные формулы А-С - по 0.5 б	2.5 балла
	Правильная структурная формула ${\bf X}-1$ балл ($ecnu$ формула ${\bf X}$	
	указана без атома калия, за X ставится 0.5δ).	
2	Правильные структурные формулы \mathbf{D} - \mathbf{G} – по 0.5 б	4 балла
	Правильная структурная формула $Y - 1$ б	
	Применение и тривиальное название $Y - \text{по } 0.5 6$	
3	Выбор верного УФ-спектра с обоснованием (за правильный	1.5 балла
	выбор без обоснования -0 б; аргументированный выбор исходя	
	из неверной окраски индиго -1 б).	
4	Формула вещества $N_1 - 0.5$ б	5.5 баллов
	Правильные структурные формулы H , I ₂ , K , L $-$ по 0.5 б	
	Правильные структурные формулы I_1, J, Z – по 1 б	
5	Обоснование с упоминанием хромофорных групп или иное	1.5 балла
	разумное объяснение	

Итого 15 баллов

Решение задачи 10-4 (Соколов А.А.)

В задаче идет речь о комплексных анионах, значит необходимо подобрать металл и лиганд, формулы которых содержали бы в себе всего две буквы. Также из этих букв должно образовываться минимум три разных газообразных вещества — \mathbf{X} , \mathbf{Y} и \mathbf{Z} . Это исключается из рассмотрения в качестве лигандов галогены, гидроксид-анион, воду, аммиак, нитрат-анион, цианид-анион, органические частицы, содержащие водород, так как из букв, содержащихся в них, нельзя составить химическую формулу металла и/или трех газов. Остаются кислородосодержащие лиганды серы (можно составить осмий, Os) и углерода (можно составить кобальт, Co). Первые встречаются гораздо реже и почти не образуют полиядерных комплексов (а они, судя по условию, в задаче присутствуют в виде соединений $\mathbf{D2}$ и $\mathbf{D3}$), так что остановимся на рассмотрении вторых. Тогда искомые буквы — \mathbf{C} и \mathbf{O} .

Очертим круг возможных соединений кобальта, удовлетворяющим условию задачи: это оксиды, карбонаты, оксалаты, карбиды и карбонилы. Газообразными веществами \mathbf{X} , \mathbf{Y} и \mathbf{Z} могут быть O_2 , O_3 , CO, CO_2 .

C1 дает разные продукты разложения в присутствии X и без него — B1 и B2, соответственно; в обоих случаях также образуется газ Z. При этом переход из B1 в B2 осуществляется путем прямой реакции первого с X при нагревании. Можно предположить, что B1 и B2 — это оксиды кобальта в различных степенях окисления, CO и CO_3O_4 , X —

кислород, ${\bf Z}-{\rm CO}_2$, а ${\bf C1}$ – карбонат кобальта(II). Данное предположение подтверждается расчетом с потерями масс.

Разложение C2 до смешанного оксида кобальта сопровождается выделением ещё одного газа — Y. Скорее всего, это CO. С образованием такой смеси газов разлагаются оксалаты, и тогда веществом C2 является оксалат кобальта(II).

Реакция карбонатов кобальта (C1) и натрия (K) приводит к образованию дикарбонатокобальтата(II) натрия, комплексный анион $\mathbf{E} - [\text{Co}(\text{CO}_3)_2]^{2-}$.

Из возможных вариантов соединений, определенных ранее, пока не были затронуты карбонилы и карбиды кобальта. Продуктом реакции $\bf A1$ с монооксидом углерода при умеренном нагревании и повышенном давлении как раз может быть первый член ряда карбонилов кобальта — $\rm Co_2(CO)_8$. Такая реакция характерна для образования карбонила из простого вещества, значит $\bf A1$ — Со. При его взаимодействии с натрием в жидком аммиаке, вероятно, образуется комплекс с карбонильным анионом кобальта. Согласно расчету по массовой доле, в $\bf F$ на один атом кобальта приходится 112.0 г/моль остальных элементов, что соответствует четырем лигандам $\bf CO$. Тогда $\bf F$ — $[\bf Co(CO)_4]^-$, а $\bf A1$ и $\bf D1$ — это действительно $\bf Co$ и $\bf Co_2(CO)_8$.

$$Co_2(CO)_8 + 2Na \xrightarrow{NH_3(x)} 2Na[Co(CO)_4]$$

Взаимодействие кобальта с CO при более высокой температуре сопровождается выделением CO₂, что указывает, что в ходе реакции также должно произойти восстановление какого-либо атома. Скорее всего, это тоже углерод, а образующийся A2 — карбид кобальта Co₂C. Массовая доля кобальта в нем 90.75 %, значит в A3 она составляет 93.64 %. По расчету подходит карбид Co₃C, который образуется при сплавлении Co₂C с Co.

Умеренное нагревание $1.71 \, \Gamma \, \text{Co}_2(\text{CO})_8$ приводит к выделению CO и образованию $1.43 \, \Gamma \, \, \textbf{D2}$. Можно предположить, что в ходе этого процесса разрывается часть связей Co–CO и образуются связи Co-Co. Согласно расчету и информации о том, что происходит димеризация, продукт реакции D2 имеет формулу $\text{Co}_4(\text{CO})_{12}$.

$$2\text{Co}_2(\text{CO})_8 \xrightarrow{50^{\circ}\text{C}} \text{Co}_4(\text{CO})_{12} + 4\text{CO}$$

В $\mathbf{D2}$ атомы кобальта образуют тетраэдр, значит количество связей между ними равно 6, а в соединении $\mathbf{D3}$ – 12. Тогда можно предположить, что в соединении $\mathbf{D3}$ и ионах \mathbf{G} , \mathbf{H} и \mathbf{I} количество атомов металла равняется шести и во всех них присутствует октаэдрических фрагмент из атомов кобальта с 12-ю связями между ними.

Запишем в общем виде реакцию взаимодействия $Co_4(CO)_{12}$ с натрием в $T\Gamma\Phi$:

$$x$$
Co₄(CO)₁₂ + y Na $\xrightarrow{T\Gamma\Phi}$ z Na_a[Co₆(CO)_b] + $3z$ Na[Co(CO)₄]

Материальный баланс атомов кобальта показывает, что 4x = 6z + 3z = 9z, значит можно предположить, что x = 9, z = 4. Тогда количество лигандов СО в **H** равняется $(9 \cdot 12 - 12 \cdot 4)/4 = 15$.

$$9\text{Co}_4(\text{CO})_{12} + y\text{Na} \xrightarrow{\text{T}\Gamma\Phi} 4\text{Na}_a[\text{Co}_6(\text{CO})_{15}] + 12\text{Na}[\text{Co}(\text{CO})_4]$$

Определим заряд аниона **H**: $y = 9 \cdot 2.22 = 20$. $a = (20-12)/4 = 2$. Значит **H** – $[\text{Co}_6(\text{CO})_{15}]^{2-}$. $9\text{Co}_4(\text{CO})_{12} + 20\text{Na} \xrightarrow{\text{T}\Gamma\Phi} 4\text{Na}_2[\text{Co}_6(\text{CO})_{15}] + 12\text{Na}[\text{Co}(\text{CO})_4]$

Запишем в общем виде реакцию взаимодействия Na₂[Co₆(CO)₁₅] с натрием в ТГФ:

$$xNa_2[Co_6(CO)_{15}] + yNa \xrightarrow{T\Gamma\Phi} 3zNa_a[Co_6(CO)_{14}] + 2zNa[Co(CO)_4]$$

Материальный баланс атомов кобальта показывает, что 6x = 18z + 2z = 20z, значит можно предположить, что x = 10, z = 3. Тогда количество лигандов СО в **I** равняется $(10\cdot15-6\cdot4)/9 = 14$.

$$10\text{Na}_2[\text{Co}_6(\text{CO})_{15}] + y\text{Na} \xrightarrow{\text{T}\Gamma\Phi} 9\text{Na}_a[\text{Co}_6(\text{CO})_{14}] + 6\text{Na}[\text{Co}(\text{CO})_4]$$

Определим заряд аниона **I**. n(Na) = 2.22 моль/2.27=0.98 моль. $n(\text{Na}_2[\text{Co}_6(\text{CO})_{15}]) = 1$ моль/9·4 = 0.44 моль. $y = 0.98/0.44 \cdot 10 = 22$. a = (42-6)/9 = 4. Значит **I** – [Co₆(CO)₁₄]⁴⁻.

$$10\text{Na}_2[\text{Co}_6(\text{CO})_{15}] + 22\text{Na} \xrightarrow{\text{T}\Gamma\Phi} 9\text{Na}_4[\text{Co}_6(\text{CO})_{14}] + 6\text{Na}[\text{Co}(\text{CO})_4]$$

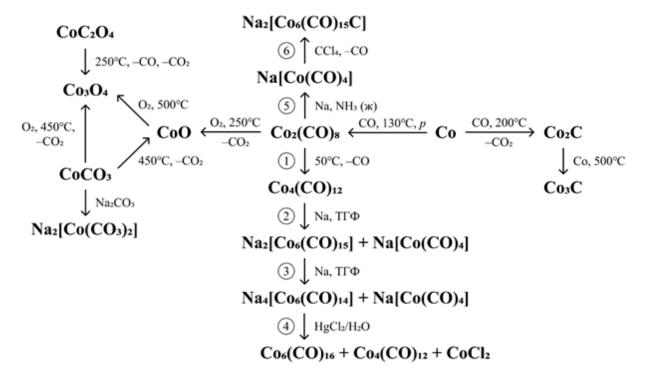
На основании вышеизложенных рассуждений можно утверждать, что $\mathbf{D3}$ – нейтральный октаэдрический карбонильный комплекс кобальта. Представим его формулу как $\mathrm{Co}_6(\mathrm{CO})_a$. Соединение \mathbf{L} , образующееся в *реакции* 4, — это, вероятно, хлорид кобальта(II), CoCl_2 . Тогда в общем виде *реакцию* 4 можно записать так (предположив, что коэффициент перед $\mathbf{D3}$ – единица):

$$x$$
Na₄[Co₆(CO)₁₄] + y HgCl₂ \longrightarrow Co₆(CO)_a + Co₄(CO)₁₂ + z Hg₂Cl₂ + w NaCl

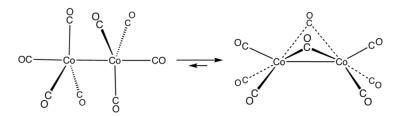
Материальный баланс атомов кобальта показывает, что x = 2. Тогда a = 16. **D3** – $Co_6(CO)_{16}$.

$$2Na_{4}[Co_{6}(CO)_{14}] + 12HgCl_{2} \longrightarrow Co_{6}(CO)_{16} + Co_{4}(CO)_{12} + 2CoCl_{2} + 6Hg_{2}Cl_{2} + 8NaCl_{2}$$

Остается определить анион **G**. Он содержит 6 атомов кобальта, которые составляют 45.00 % от его молярной массы. Тогда она равна $58.933 \text{ г/моль} \cdot 6/0.4500 = 785.8 \text{ г/моль}$. Без учета атомов кобальта, это соответствует 15-и лигандам CO и ещё 12.0 г/моль от дополнительного атома углерода, присутствующего в составе аниона. **G** – $[\text{Co}_6(\text{CO})_{15}\text{C}]^{2-}$.


$$6Na[Co(CO)_4] + CCl_4 \longrightarrow Na_2[Co_6(CO)_{15}C] + 4NaCl + 9CO$$

 $X - O_2$, Y - CO, $Z - CO_2$, A1 - Co, $A2 - Co_2C$, $A3 - Co_3C$, B1 - CoO, $B2 - Co_3O_4$, $C1 - CoCO_3$, $C2 - CoC_2O_4$, $D1 - Co_2(CO)_8$, $D2 - Co_4(CO)_{12}$, $D3 - Co_6(CO)_{16}$, $E - [Co(CO_3)_2]^{2-}$, $F - [Co(CO)_4]^-$, $G - [Co_6(CO)_{15}C]^{2-}$, $H - [Co_6(CO)_{15}]^{2-}$, $I - [Co_6(CO)_{14}]^{4-}$.


Уравнения реакций 1-6:

- (1) $2\text{Co}_2(\text{CO})_8 \xrightarrow{50^{\circ}\text{C}} \text{Co}_4(\text{CO})_{12} + 4\text{CO}$
- (2) $9\text{Co}_4(\text{CO})_{12} + 20\text{Na} \xrightarrow{\text{T}\Gamma\Phi} 4\text{Na}_2[\text{Co}_6(\text{CO})_{15}] + 12\text{Na}[\text{Co}(\text{CO})_4]$
- (3) $10\text{Na}_2[\text{Co}_6(\text{CO})_{15}] + 22\text{Na} \xrightarrow{\text{T}^{\text{T}^{\text{D}}}} 9\text{Na}_4[\text{Co}_6(\text{CO})_{14}] + 6\text{Na}[\text{Co}(\text{CO})_4]$
- $(4)\ 2Na_{4}[Co_{6}(CO)_{14}] + 12HgCl_{2} \longrightarrow Co_{6}(CO)_{16} + Co_{4}(CO)_{12} + 2CoCl_{2} + 6Hg_{2}Cl_{2} + 8NaCl_{2} + CoCl_{2} + 6Hg_{2}Cl_{2} + 8NaCl_{2} +$
- (5) $Co_2(CO)_8 + 2Na \xrightarrow{NH_3(x)} 2Na[Co(CO)_4]$
- (6) $6Na[Co(CO)_4] + CCl_4 \longrightarrow Na_2[Co_6(CO)_{15}C] + 4NaCl + 9CO$

Полная схема превращений имеет вид:

Структуры **D1** в растворе и кристалле имеют следующий вид:

Обозначим количество терминальных лигандов за x, количество мостиковых — за y.

Тогда в **D3**:
$$x + y = 16$$

Общее количество связей Со–СО в **D3** равняется 6.4 = 24. Причем каждый терминальный лиганд образует одну связь, а мостиковый -3. Тогда: x + 3y = 24

Решая систему, получаем y = 4; x = 12.

D3 – 12 терминальных лигандов, 4 мостиковых лиганда

Аналогично для I:

$$x + y = 14$$

$$x + 3y = 30$$

$$y = 8$$
; $x = 6$

I – 6 терминальных лигандов, 8 мостиковых лигандов

Система оценивания

1	Формулы веществ X , Y , Z , A1 , A2 , A3 , B1 , B2 , C1 , C2 , D1 ,	9 баллов
	D2 , D3 и анионов E , F , G , H и I – по 0.5 б	
2	Уравнения реакций 1-6 – по 0.5 б	3 балла
3	Структурные формулы изомеров D1 – по 0.5 б	1 балл

4	Количество терминальных и мостиковых лигандов в D3 и I –	2 балла
	по 0.5 б	

Итого 15 баллов

Решение задачи 10-5 (Алёшин Р.П.)

1. Указанное в вопросе «положение равновесия» намекает на протекание обратимой окислительно-восстановительной реакции:

$$Ag^+ + Fe^{2+} \rightleftarrows Ag + Fe^{3+}$$

Равновесие достигается при равенстве потенциалов полуреакций восстановления катионов:

$$E_{Ag^+/Ag} = E_{Fe^{3+}/Fe^{2+}}$$

Обе полуреакции восстановления катионов металлов потребляют $n_e=1$ электрон, следовательно, уравнение можно переписать в виде:

$$E_{Ag^{+}/Ag}^{0} + \frac{RT}{F} \cdot \ln[Ag^{+}] = E_{Fe^{3+}/Fe^{2+}}^{0} + \frac{RT}{F} \cdot \ln\frac{[Fe^{3+}]}{[Fe^{2+}]}$$

$$E_{Ag^{+}/Ag}^{0} - E_{Fe^{3+}/Fe^{2+}}^{0} = \frac{RT}{F} \cdot \ln\frac{[Fe^{3+}]}{[Fe^{2+}][Ag^{+}]}$$

При смешении исходных растворов получаем 100 мл смеси с начальными концентрациями реагентов по 0.05 моль/л. Пусть в ходе реакции концентрации реагентов уменьшились на х моль/л, тогда $[Fe^{2+}] = [Ag^+] = 0.05 - x$ моль/л; а $[Fe^{3+}] = x$ моль/л. Следовательно,

$$\ln \frac{[Fe^{3+}]}{[Fe^{2+}][Ag^{+}]} = (E_{\frac{Ag^{+}}{Ag}}^{0} - E_{\frac{Fe^{3+}}{Fe^{2+}}}^{0}) \cdot \frac{F}{RT} = (0.799 \text{ B} - 0.771 \text{ B}) \cdot \frac{96485 \text{ Кл/моль}}{8.314 \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \cdot 298.15 \text{ K}}$$
$$\ln \frac{x}{(0.05-x)^{2}} = 1.09 \qquad \frac{x}{(0.05-x)^{2}} = 2.974$$

Физический смысл имеет только корень $x = 5.81 \cdot 10^{-3}$ моль/л.

$$n(Fe^{2+})=n(Ag^+)=0.1~\pi\cdot(0.05-x$$
 моль/л) = $4.42\cdot10^{-3}$ моль; $n(Fe^{3+})=n(Ag)=0.1~\pi\cdot x$ моль/л = $5.81\cdot10^{-4}$ моль; $n(TfO^-)=0.1~\pi\cdot(2\cdot0.05$ моль/л + 0.05 моль/л) = 0.015 моль.

Электродный потенциал рассчитаем по серебру (расчёт по железу даёт тот же ответ):

$$E = 0.799 \text{ B} + \frac{8.314 \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \cdot 298.15 \text{ K}}{96485 \text{ Кл/моль}} \cdot \ln(0.05 - x) = 0.719 \text{ B}.$$

- 2. Наиболее пригодна трифторметансульфокислота, поскольку она является сильной кислотой (фактически суперкислотой), а её анион совпадает с анионом в солях металлов.
- 3. Известно не так много анионов, которые бы образовывали водорастворимые соли серебра и железа (II) одновременно. Согласно таблице растворимости, это могли быть нитрат, дигидрофосфат, ацетат и перхлорат.

Поскольку фосфорная и уксусная кислоты не являются сильными, обеспечить pH=0 в случае дигидрофосфатов и ацетатов было бы крайне затруднительно. Также известно, что железо образует комплексные частицы с фосфатными лигандами, что могло бы повлиять на редокс-потенциал для пары катионов железа.

С другой стороны, нитрат- и перхлорат-ионы в сильнокислой среде проявляют сильные окислительные свойства, что мешает изучению редокс-равновесий в их присутствии.

4. Кубик покрывается поверхностными слоями металлического серебра, препятствующего дальнейшему протеканию «реакции замещения». В результате в раствор переходит очень малое количество железа, которое окисляется в формы Fe^{2+} и Fe^{3+} . Электродный потенциал исходной системы равен:

$$E_{Ag^+/Ag} = E_{Ag^+/Ag}^0 + \frac{RT}{F} \cdot \ln[Ag^+] = 0.799 \text{ B} + \frac{8.314 \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \cdot 298.15 \text{ K}}{96485 \frac{\text{Кл}}{\text{моль}}} \cdot \ln 0.4 = 0.775 \text{ B}.$$

В ходе опыта [Ag⁺] понизится, значит, потенциал системы уменьшится. Получается, что в момент остановки реакции $E_{\rm oct}=0.775~{\rm B}-0.004~{\rm B}=0.771~{\rm B}=E_{Fe^{3+}/Fe^{2+}}^0$, и как следствие, $[Fe^{2+}]=[Fe^{3+}]$. В уравнение реакции Fe^{2+} и Fe^{3+} должны войти в равных количествах:

$$5AgOTf + 2 Fe = 5 Ag + Fe(OTf)_2 + Fe(OTf)_3$$
или $5Ag^+ + 2Fe = 5Ag + Fe^{2+} + Fe^{3+}$

5. Исходный кубик, как и обычное железо, растворяется в кислотах-неокислителях, участвует в «реакциях замещения» с солями менее активных металлов, корродирует во влажном воздухе. Концентрированные кислоты-окислители в холодном виде пассивируют поверхность кубика.

Свойства кубика с модифицированной серебром поверхностью будут практически полностью соответствовать поведению металлического серебра. Кубик будет устойчив к действию разбавленных кислот-неокислителей, солей и не будет корродировать во влажном воздухе. В то же время поверхностное серебро способно растворяться в холодных концентрированных кислотах-окислителях, оставляя после себя пассивированную оксидами железа поверхность кубика.

В горячих концентрированных или холодных разбавленных кислотах-окислителях оба кубика растворяются полностью (за исключением инертности модифицированного кубика к $H_2SO_4(pas6)$).

6. В данном случае требуется приравнять потенциалы полуреакций восстановления серебра как в виде свободного катиона, так и в виде комплексной соли:

$$\begin{split} E_{Ag^{+}/Ag} &= E_{Ag_{4}[Fe(CN)_{6}]/Ag,[Fe(CN)_{6}]^{4-}} \\ E_{Ag^{+}/Ag}^{0} &+ \frac{RT}{F} \cdot \ln[Ag^{+}] = E_{Ag_{4}[Fe(CN)_{6}]/Ag,[Fe(CN)_{6}]^{4-}}^{0} + \frac{RT}{4F} \cdot \ln\frac{1}{[Fe(CN)_{6}^{4-}]} \\ E_{Ag_{4}[Fe(CN)_{6}]/Ag,[Fe(CN)_{6}]^{4-}}^{0} &= \frac{RT}{4F} \cdot \ln([Ag^{+}]^{4}[Fe(CN)_{6}^{4-}]) \\ \ln \Pi P(Ag_{4}[Fe(CN)_{6}]) &= (E_{Ag_{4}[Fe(CN)_{6}]/Ag,[Fe(CN)_{6}]^{4-}}^{0} - E_{Ag^{+}/Ag}^{0}) \cdot \frac{4F}{RT} = -101.36 \end{split}$$

$$\Pi P(Ag_4[Fe(CN)_6]) = e^{-101.36} = 9.5 \cdot 10^{-45}$$

Принимая растворимость $Ag_4[Fe(CN)_6]$ равной s, получим $[Ag^+]=4s$, $[Fe(CN)_6^{4-}]=s$, поскольку

$$Ag_4[Fe(CN)_6] \rightleftarrows 4 Ag^+ + [Fe(CN)_6]^{4-}$$

Тогда ПР
$$(Ag_4[Fe(CN)_6])=[Ag^+]^4[Fe(CN)_6^{4-}]=(4s)^4\cdot s=256s^5$$

$$s = \sqrt[5]{\frac{9.5 \cdot 10^{-45}}{256}} = 5.2 \cdot 10^{-10} \text{ моль/л.}$$

Электродный потенциал вновь рассчитаем по серебру (расчёт по соли ведёт к тому же числу):

$$E = 0.799 \text{ B} + \frac{8.314 \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \cdot 298.15 \text{ K}}{96485 \text{ Кл/моль}} \cdot \ln(4s) = 0.285 \text{ B}.$$

Система оценивания

1	Приравнивание уравнений Нернста для положения равновесия – 1 б	5 баллов
	Нахождение корня квадратного уравнения – 1 б	
	Нахождение количеств ионов и частиц – по 0.5 б	
	Расчёт равновесного электродного потенциала – 0.5 б	
2	Выбор трифторметансульфокислоты – 0.5 б	0.5 балла
3	Нахождение 4-х анионов растворимых солей металлов – по 0.2 б	2.8 балла
	Исключение ацетатов и фосфатов как анионов слабых кислот – 1 б	
	Исключение нитратов и перхлоратов как анионов-окислителей – 1 б	
4	Обоснованная запись уравнения реакции – 1 б	1 балл
5	Верное описание отношения кубиков отдельно к разбавленным и	3.2 балла
	концентрированным кислотам, солям и влажному воздуху – по 0.4 б	
6	Расчёт ПР(Ag ₄ [Fe(CN) ₆]) – 1 б	2.5 балла
	Расчёт растворимости Ag ₄ [Fe(CN) ₆] – 1 б	
	Расчёт электродного потенциала – 0.5 б	
Г		

Без подтверждения расчётом или обоснования ответа оценка составляет половину от максимально возможного балла

Итого 15 баллов